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Chapter 1

Introduction

The world of Artificial Intelligence (AI) has witnessed breathtaking progress, revolu-
tionizing various domains and transforming the way we interact with technology. The
current state-of-the-art in Al mainly encompasses developing deep learning algorithms
to solve complex tasks. The success of deep learning has empowered machines to
accomplish remarkable feats, from visual understanding to auditory learning to natural
language processing. Picture this: Deep neural networks can now analyze images
and videos, recognizing objects [271], faces [151], and even complex scenes [ 54].
This has found practical applications in fields like autonomous driving [19], surveil-
lance systems [ 13, 18], and healthcare [155, 37]. Advances in audio understanding
have enabled machines to transcribe spoken words into written text [ 1 86], classify
sounds [!76], monitor noise [194], and recognize speakers [12]. It has empowered
voice assistants like Amazon’s Alexa to understand and respond to user commands,
providing hands-free control and access to information. Similarly, natural language
processing has advanced to a point where machines can understand and generate
human-like text [43, 20]. This has resulted in advancements such as language trans-
lation [168], sentiment analysis [40], and chatbots and virtual assistants. Notably,
chatbots like ChatGPT have demonstrated impressive capabilities, simulating human-
like interactions and providing valuable assistance across various domains. Moreover,
Al has pushed the boundaries of creative expression with audio and visual generation
models. AI models can now produce stunningly realistic images and videos [187,
], compose original music [ 104, 47], and mimic specific styles of artists [35, 1,
blurring the line between natural and computer-generated content. These advances in
Al have far-reaching implications, promising a future where technology seamlessly
integrates with everything in our lives, providing intelligent solutions and captivating
experiences. Conversely, such advancements in Al also have the potential to increase
socioeconomic inequality with more automation, increase privacy and security con-
cerns, raise ethical challenges such as autonomous weapons and deep fakes, and make
it harder to distinguish between information and misinformation, etc. With such rapid
progress and potential for both good and bad, the imperative for more responsible Al
becomes evident.
A crucial role in advancing Al in various areas is played by supervised learning.
It involves teaching models to learn patterns and relationships between data and
their assigned labels. For instance, images are annotated with object classes and
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FIGURE 1.1: Supervised vs Self-supervised Learning. Supervised learning requires data
labeled by humans and aims to learn feature representations by solving the corresponding
classification task (here: activity classification). Self-supervised learning learns from
unlabeled data and aims to learn feature representations by solving an auxiliary task e.g.
an N-way classification problem in which the network must predict which rotation angle
was used to transform the input video. Self-supervision results in learning high-level
semantics directly from the unlabeled data and has become the de facto strategy for
training foundation models.

object locations, language data is annotated with sentiment labels, and videos are
annotated with activity class labels. By explicitly training models to predict the
correct labels for a number of examples, they learn to understand underlying semantic
patterns and relationships that exist in the data and associate them with the correct
labels. This allows the models to make predictions on new, unseen data. However,
meticulously labeling large amounts of data is expensive and time-consuming. Thus,
various learning strategies e.g. transfer learning, semi-supervised learning, active
learning, and self-supervised learning have emerged to address this shortcoming.
Rather than relying on manual annotations, self-supervised learning methods design
auxiliary tasks, that learn meaningful semantic patterns from the inherent structure of
the data itself (see Figure 1.1). For instance, models can learn useful representations
by learning to recognize the different rotations of an image [72] or by predicting
the next word in a sentence [ 16, ]. These learned representations can then be
transferred to solve different tasks e.g. image classification or sentiment analysis with
a small amount of task-specific labeled data. The success of self-supervised learning
has resulted in the emergence of powerful foundation models [17], i.e., models that
are pretrained on broad data and can be adapted to a wide range of downstream tasks.
Self-supervised tasks like masked language modeling [43] have become the de facto
learning strategy to train large foundation models for text data like GPT [184, 20].
Similarly, in the image domain, self-supervised tasks like contrastive learning [29,
], masked autoencoding [84, 9] and image-text alignment [ 185, ] have achieved
the levels of supervised learning or even surpassed it in some cases. However, the
same progress has not been made in video self-supervised learning.
Videos are special and distinct due to their unique characteristics and rich infor-
mation. Firstly, videos capture temporal dynamics, providing a sequence of frames
that convey motion, actions, and changes in the scene. This temporal nature allows
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for the modeling of motion patterns and dependencies, necessary for solving tasks
like action recognition [ , , ]. Secondly, videos offer rich contextual in-
formation by observing multiple frames, allowing for a broader understanding of
objects, events, and their interactions, necessary for modeling tasks such as object

detection and tracking [ 108, , 59], temporal action detection [200, 31, , 1,
spatio-temporal action detection [ 100, ], multi-label action classification [202]
and temporal repetition counting [276, , ]. Most video self-supervised tasks

are adapted from image-based counterparts and often fall short of capturing these
intricate aspects that are inherent to video data. Additionally, videos contain large
amounts of redundant frames where semantics vary slowly in the temporal dimension,
making it computationally expensive to process and train self-supervised models on
the same scale as that of images and text. Given these unique characteristics, training
video foundation models require self-supervised tasks that can model better motion
dynamics and contextual information in videos, while also reducing the associated
computational costs. Furthermore, a good video foundation model requires having
enhanced generalization capability such that it can be adapted to various downstream
contexts e.g., with limited task-specific labels, domains not seen in pretraining, differ-
ent video-based tasks, etc. Finally, video data can be observed in non-RGB modalities
like Audio, Depth Maps, Infrared, and Skeleton Sequences, allowing us to model
human actions in a unique way while preserving individuals’ privacy, as shown in
Figure 1.2. These modalities can offer advantages in challenging scenarios, such
as low-light conditions or occlusions, and where privacy concerns are paramount,
and have been used for action analysis [263, , , ]. Consequently, it is also
paramount to explore video data beyond the common RGB modality and build video
foundation models that are specific to non-RGB video modalities. Overall, this leads
to a core query: Can machines start to understand the dynamic aspects of multi-modal
video data, learn spatio-temporal patterns with limited label supervision and limited
data, and apply them to unseen contexts in a way that closely resembles how we
humans see things?

1.1 Problem Statement

This thesis tackles the problem of video-efficiency for video foundation models. We
define video-efficiency as a multifaceted problem that demands video foundation
models that are not only accurate but also exhibit label-efficiency, domain-efficiency,
and data-efficiency, which we detail one by one.

Label-efficiency refers to using a reduced set of labeled videos for solving video-
based tasks. The process of annotating videos involves manually identifying events,
delineating temporal boundaries, recognizing objects and their spatial locations, or
describing scenes over time. Based on the task, video annotations can span various
levels, such as assigning labels to the entire video [ | 3], to specific events within the
video [98], or to individual pixels [179]. Thus, it is a resource-intensive endeavor that
necessitates substantial capital, human expertise, and time investment. The process
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FIGURE 1.2: Multiple facets of video understanding encompassing different modalities,
environments, action granularities, and tasks. Non-RGB modalities represent a privacy-
preserving video modality with many potential use cases and therefore require solutions
that are specific to these modalities. And, to endow video-efficiency we need models
that can be useful for multiple visual environments, granularities, and tasks in video
understanding. This thesis addresses all these facets for video-efficient foundation models.

becomes even more challenging for tasks like temporal repetition counting [276],
which involves counting the number of repetitions of an event in a period of time.
Consequently, there is a critical need to train video foundation models that only require
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small amounts of labeled video data for the downstream tasks, leading to significant
annotation cost reduction.

Domain-efficiency refers to the ability of a video model to be effective for diverse
video contexts. For instance, videos originating from diverse environments like indoor
setups, outdoor landscapes, or sports arenas, introducing variability in visual contexts
(see Figure 1.2). It is important to capture such variability so that the same model
can be used for different environments, instead of training a new model for each
environment of interest. Similarly, actions in videos can vary in granularity, demanding
a distinct level of semantic understanding for coarse-grained actions (diving vs playing
basketball) and for fine-grained actions (different types of dives in diving), as shown
in Figure 1.2. Furthermore, video-based tasks can encompass a wide range (as shown
in Figure 1.2), e.g., action recognition [209], temporal action detection [98], and
temporal repetition counting [276], necessitating tailored insights and representations.
The conventional approach requires training new models specific to each such domain
variability which is time-consuming and resource-intensive. Consequently, the need for
video foundation models that adapt to diverse visual contexts, accommodate varying
levels of granularity, and apply to multiple tasks becomes imperative, allowing for the
same model to be useful for various applications.

Data-efficiency pertains to the capability of a model to learn effectively from a
limited amount of video data without experiencing a substantial drop in performance.
Traditional deep learning models [82, 110, 112, 256] for video understanding typically
demand vast video datasets and extensive computational resources. However, real-
world constraints, such as privacy concerns or limited training resources, may impede
the ability to train on large volumes of video data. In such scenarios, the ability to
extract meaningful insights and achieve desirable results with limited data becomes
paramount. Data efficiency allows for more efficient utilization of available resources
and facilitates the development of video foundation models in contexts where data
collection is challenging or computational resources are limited.

1.2 Research Questions

To address the problem of video-efficiency in video foundation models, we pose the
central research question of this thesis:

What enables video-efficient video foundation models?

Our research covers label-efficiency, domain-efficiency, and data-efficiency of
video foundation models in standalone and in combination. We examine video-
efficient learning for different types of input video modalities: RGB, Depth maps, and
3D-Skeleton sequences, and for different learning strategies: knowledge transfer, and
self-supervised learning. We observe that video foundation models are not extensively
explored for different dimensions of video-efficiency. In this thesis, we dive into
our main research question by answering a specific sub-question in each of the four
chapters.
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As a starting point for our investigation into video-efficiency, we aim to achieve
label-efficiency for non-RGB video modalities. The goal is to recognize and detect
actions from non-RGB modalities like Depth maps and 3D-skeleton sequences when
only limited modality-specific labeled examples are available. For the RGB modality,
many large-scale labeled datasets [113, 25, ] have been made available. They
have become the de facto pretraining choice when recognizing or detecting new
actions from RGB datasets that have limited amounts of labeled examples available.
Unfortunately, such large-scale labeled action datasets for non-RGB modalities are
unavailable for supervised pretraining, highlighting the need for alternate solutions for
label-efficient action recognition or detection with non-RGB video data. Therefore, we
investigate the feasibility of transferring knowledge from pretrained RGB-based video
models to efficiently train new non-RGB video models. Consequently, the following
research question is posed:

What transfers efficiently across video modalities?

In Chapter 2, we answer this question and propose a novel method for cross-
modal knowledge distillation between RGB and non-RGB video modalities. To train
action models with limited labeled examples from non-RGB video modalities we
propose a teacher-student approach that leverages knowledge from large-scale labeled
RGB data. Our proposal involves a two-step training process: (i) extracting action
representation knowledge from an RGB-trained teacher network and adapting it to a
non-RGB student network, and (ii) finetuning the transfer model using available la-
beled examples of the non-RGB target modality. For knowledge transfer, we introduce
feature-supervision strategies that rely on unlabeled paired data from the RGB and the
target modality to effectively transfer feature-level representations from the teacher
to the student network. Experimental evaluation demonstrates the effectiveness of
our approach in improving the label-efficiency for action recognition and detection
using Depth maps and 3D-skeleton sequences. Moreover, our method showcases
domain-efficiency by effectively transferring knowledge from RGB datasets captured
in different environments.

Although our proposed cross-modal transfer improves label- and domain-efficiency
for the non-RGB modalities. It still requires a large amount of labeled RGB data for
training the teacher network as well as access to unlabeled paired videos from the
RGB and the target modalities for knowledge transfer. Recent approaches, increase
label efficiency by removing the need for any labels in learning feature representations
by relying on self-supervision [85, 29]. The objective of self-supervised learning is to
directly learn feature representations from the unlabeled data of a specific modality,
which can then be finetuned with a small amount of labeled data from the same modal-
ity. However, these self-supervision approaches [169, , , 94] predominantly
focus on the RGB video modality and are less prevalent for non-RGB modalities such
as 3D-skeleton sequences. This leads us to the next research question: Can we enhance
video efficiency for non-RGB modalities through self-supervision? Specifically, we
pose the research question:
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What is self-learnable for 3D-skeleton video sequences?

Self-supervised methods applied to the RGB domain [85, 29, , , , 94, 41]
have achieved success through contrastive learning, which enables the learning of
invariances to various data augmentations. The effectiveness of these methods is
attributed to the augmentation techniques that are possible in the RGB domain, which
can generate meaningful positive pairs capturing spatio-temporal dynamics in video
data. Conversely, self-supervised approaches [280, , , ] for 3D-skeleton data
rely on pretext tasks such as reconstructing masked input skeletons or predicting joint
motions to learn feature representations. Adapting contrastive learning for 3D-skeleton
data poses challenges due to the absence of comparable augmentations and the sparse
nature of skeleton data, which restricts the input sampling space. In Chapter 3, we
propose a novel self-supervised method for 3D-skeleton sequences based on con-
trastive learning. Our proposal is built upon learning invariances to various skeleton
augmentations and input skeleton representations via a noise contrastive estimation. In
particular, we contribute several skeleton-specific spatial and temporal augmentations
that can generate meaningful positive pairs to learn the spatio-temporal dynamics of
the skeleton data. In addition, we propose inter-skeleton contrastive learning, which
learns from multiple different input skeleton representations in a cross-contrastive
manner. This also enriches the input sampling space for contrastive learning. By
learning similarities between different skeleton representations as well as augmented
views of the same sequence, the network is encouraged to learn higher-level semantics
of the skeleton data than when only using the augmented views. Besides achieving
state-of-the-art results on challenging benchmarks for skeleton-based action recog-
nition and retrieval, our approach showcases superior label-efficiency compared to
previous methods when evaluated on downstream setups with limited labeled data.
In the previous chapters, our primary focus has centered on improving the video
efficiency of non-RGB video foundation models. However, it is important to acknowl-
edge that most video-based tasks [238, , , , , 22, , , , 21,
, , ] are commonly addressed in the RGB domain due to its prevalence
and visual nature. This emphasizes the significance of enabling video efficiency of
the RGB-based video foundation models. Previous research has addressed various
aspects of video efficiency in the RGB domain by building video foundation models
that aim to learn general video representations using large-scale video datasets. These
representations are subsequently employed to enhance the label and domain efficiency
of new video contexts through transfer learning. The simplest way to train a video
foundation model is via supervised pretraining i.e. by training action classification
models on large human-annotated video datasets [52, ]. Recently, self-supervised
learning techniques have shown significant advancements in training video foundation
models [64, , , , , 8, 4, ] by directly learning from unlabeled video
data. However, the emphasis has primarily been on creating novel self-supervised
tasks, leaving a substantial gap in understanding the video efficiency of self-supervised
models. For instance, the current evaluation approach of video self-supervised tasks
involves training models on a large unlabeled dataset [ | | 3] and finetuning them on
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small labeled action classification datasets [209, ] to assess the performance. The
finetuning datasets consist of videos that exhibit a high degree of domain similarity to
those employed in self-supervised training. Specifically, they share comparable envi-
ronmental conditions and action granularity and only evaluate for action classification
tasks. This raises concerns about whether high-performing models will succeed in
challenging real-world scenarios. These scenarios may involve a scarcity of labeled
videos or videos with different visual environments and action granularities compared
to those in the self-supervised training datasets. They may also encompass video
tasks that go beyond action classification. Consequently, it is essential to thoroughly
investigate the effectiveness of video representations obtained through current self-
supervised techniques in terms of both label- and domain-efficiency. This prompts us
to formulate the following research question:

What limits video-efficient foundation models?

In Chapter 4, we systematically address the research question by conducting a com-
prehensive large-scale study to evaluate the performance of existing self-supervised
video learning methods across various downstream setups. These setups encompass
different environmental conditions, varying amounts of labeled data, diverse levels
of granularities, and a range of video tasks. Our study entails over 500 experiments
conducted on 7 video datasets, employing 9 self-supervised methods, and evaluating
performance on 6 video understanding tasks. The results of our study reveal that
current benchmarks in video self-supervised learning fail to adequately capture the
generalizability of representations across these diverse downstream factors. We ob-
serve that self-supervised methods significantly underperform compared to vanilla
supervised pretraining, particularly in scenarios involving substantial domain shifts
and limited labeled samples. Through extensive analysis, we distill a subset of our
experiments known as the SEVERE-benchmark, which provides insights into video-
efficiency of representations obtained by existing and future video self-supervised
methods. Our study highlights the limitations of existing video self-supervised founda-
tion models in terms of their ability to generalize effectively to diverse and challenging
downstream setups. This finding motivates us to pose the final research question:

What generalizes video-efficient foundation models?

Most video self-supervised methods are based on contrastive learning [ 181, ,

, , ] where the goal is to increase feature similarity between spatially
and temporally augmented clips from the same video, known as positive pairs. De-
spite temporal differences, such positive pairs maintain a high spatial similarity and
coarse-grained features can solve the contrastive task without needing to explicitly
capture local motion dynamics. This limits the generalizability of the learned video
representations, especially to domains that require finer motion understanding, as
observed in Chapter 4. To address this limitation, in Chapter 5 we propose a new video
self-supervised learning task that explicitly aims to learn motion-focused video repre-
sentations. In particular, we propose a contrastive method to learn similarities between
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videos with identical local motion dynamics but an otherwise different appearance. We
do so by adding synthetic motion trajectories to videos which we refer to as tubelets.
By simulating different tubelet motions and applying transformations, such as scaling
and rotation, we introduce motion patterns beyond what is present in the pretraining
data. This allows our model to be data-efficient in the pretraining too. In particular, our
method demonstrates remarkable data-efficiency in pretraining and can maintain its
performance when using only 25% of the pretraining data. Experimental evaluations
conducted across diverse downstream settings demonstrate that our approach enables
self-supervised learning of video foundation models that are not only data-efficient
but also label-efficient and domain-efficient.

To summarize, this thesis focuses on video-efficiency of video foundation models.
It begins by exploring the advantages of video-efficient learning. The thesis delves
into technological innovations that facilitate various aspects of video-efficiency for
non-RGB- and RGB-based video foundation models. In the following section, we
present a list of all publications that resulted from the research. Furthermore, each
research question introduced above is expanded upon in the subsequent chapters.
Finally, we provide our conclusion in the last chapter of the thesis.

1.3 Publications, Co-authorship, and Roles
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Chapter 2

Feature-Supervised Action Modality
Transfer

2.1 Introduction

The goal of this chapter is to recognize an action like drinking water, hugging or
falling down in multimodal video content, be it a stream of RGB pixels [62, , 83],
depth maps [263, , ] or 3D-skeletons [199, , ]. The common approach
to action recognition in video is to train a deep convolutional neural network on
massively labeled RGB, or derived optical-flow, video datasets like Kinetics [ 13],
Sports-1M [111] or ActivityNet [56]. These pre-trained RGB models are also valuable
to recognize or detect new actions from alternative RGB videos, with only limited
amounts of labeled action examples available for fine-tuning [209, , 98], thereby
saving a lot of annotation cost. Unfortunately, for non-RGB video modalities massively
labeled action datasets, and the corresponding pre-trained models, are scarce. In
this chapter, we strive for limited-example action recognition in non-RGB video
modalities, like depth maps and 3D-skeletons, by learning from large-scale RGB
video data labeled with other actions.

We take inspiration from the ideas of general knowledge distillation by Hinton et
al. [87] and cross-modal distillation for action recognition. e.g. [66, 65, 38, ]. The
goal of knowledge distillation is to compress a large complex teacher network into
a small and simple student network. In cross-modal distillation a teacher network is
first trained to recognize a set of actions from the source action modality using many
labeled examples. Then the teacher network distills knowledge to the student network
to recognize the same set of actions from a different target action modality. We adapt
these ideas for a different setting. That is, to train a student network to recognize
a set of actions from a target modality while distilling knowledge from a teacher
network that has been trained to recognize a different set of actions from a different
source action modality. This scenario has a practical application for recognizing or
detecting new actions from non-RGB action modalities with limited labeled examples.
Instead of relying on labeled large scale datasets of these non-RGB modalities for
pre-training (which are scarce), we can distill knowledge from existing RGB trained
action models. In summary, we aim to transfer information about recognizing actions
across modalities and across classes.
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In this chapter, we propose to recognize and detect actions from non-RGB modali-
ties like depth maps and 3D-skeleton sequences, when only limited labeled examples
for these modalities are available. To achieve this, we assume an RGB trained action
model is given and we also have access to many unlabeled pairs of two modalities
(paired RGB and non-RGB actions), along with some labeled examples for the non-
RGB action modality. Then, the trained RGB model acts as the teacher network to
supervise the learning of the non-RGB student model using unlabeled modality pairs.
In contrast to the general knowledge transfer, which distills class probabilities from
the teacher to the student network, we distill action representations from the teacher
to the student network via feature-level supervision. More precisely, for a given unla-
beled modality pair, the non-RGB student network is optimized to match its output
features with that of the trained RGB teacher. After this cross-modal distillation step,
the non-RGB student network is fine-tuned with the available labeled examples of
the non-RGB modality for a downstream task. Before presenting our method, we will
first discuss in more detail related work.

2.2 Related Work

2.2.1 Modalities for Action Recognition

Modern action recognition, e.g., [1 13, 83, , , ] relies on deep (2D or 3D)
CNN architectures that learn to classify human actions from video data. These methods
usually require a common video modality such as RGB, the RGB-derived optical-flow
or both [204, 58, ] to achieve best performance for this task. For these video
modalities many large-scale and publicly available annotated action datasets exists,
such as Kinetics-(400, 600 and 700) [113, 24, 25], Sports-1M [111], and ActivityNet
[56]. These sets also act as valuable pre-training resource for classifying and detecting
new actions from other RGB action datasets, which have smaller amounts of labeled

examples.

There is also a large body of works that learn to classify human actions from
other video modalities such as depth maps [263, , , ], sequences of 3D-
skeletons [199, , , ], and even radio frequencies [130]. Although action

recognition networks for these modalities may perform well, they require a large
number of labeled action examples from the target modality for training. In contrast,
our method utilizes large-scale labeled datasets of the commonly available RGB
modality to boost the performance on non-RGB modalities, especially when only
limited amounts of non-RGB labeled examples are available.

2.2.2 Knowledge Transfer

Recently, knowledge distillation has been explored to transfer knowledge across
modalities for tasks like emotion recognition [3], pose estimation [285], object detec-
tion [89, 78, 27], video captioning [273, ] and action recognition [606, 65, 38, ,



2.2. Related Work 13

, 222, 192].

Gupta et al. [ 78] transfer knowledge from the RGB to the depth modality for the
task of object detection in images using a cross-modal teacher-student network that
matches features between the two modalities. Similarly, Sayed et al. [192] proposed
a self-supervised method to learn feature similarity between RGB and optical flow
modalities by maximizing similarity between clip features from paired RGB-flow
videos and minimizing similarity across unpaired video clips. We rely on a similar
principle, but different from both [78] and [192] we propose to exploit the temporal
structure of video data for better information exchange via new feature-supervised
granularities, like clip-to-clip, video-to-clip and video-to-video. These granularities
not only improve transfer performance for action classification and detection, but are
also necessary for challenging modality pairs like RGB and 3D-skeletons.

Thoker and Gall [222] proposed cross-modal transfer where a source (teacher)
network is already trained to recognize a set of actions from the RGB modality. Their
goal is to train a new (student) network to recognize the same set of actions, but from
the skeleton modality. Unlabeled RGB-Skeleton action pairs are used such that the
output action class predictions from the RGB teacher are matched by corresponding
3D-skeleton based student via common distillation losses like cross entropy (CE)
or Kullback-Leibler divergence (KL). We deal with a more difficult variant of this
problem, where the goal is to train a non-RGB student network to recognize a dif-
ferent set of actions than those of the RGB teacher. Thus, the action classes seen
by the teacher and the student network are disjunct for our case and the CE and KL
losses used by Thoker and Gall are no longer applicable. Instead, we propose to
rely only on feature-level supervision between teacher and student by minimizing
the cosine distance. Instead of transferring class labels, we transfer action-specific
feature-representations from the RGB modality to a non-RGB target modality. The
features learned in this manner can be then fine-tuned to different downstream tasks.

Closest to our work are [60, 65, 38, , 67], who all propose to extract knowledge
from one or more source modalities to enhance action classification in a different
target modality. Particularly, both Crasto et al. [38] and Stroud et al. [210] boost the
performance of RGB-only action recognition by distilling knowledge from a trained
optical-flow teacher. Similarly, Garcia et al. in [66] and [67] rely on depth maps with
or without optical-flow, as labeled paired source modalities to boost the performance
of RGB-only action recognition. These methods also assume the network for the
source modality is trained to recognize the same set of action classes as the target
modality and they rely on labeled pairs (or triplets) of the respective modalities to
transfer class-specific information from the source to the target modality. As mentioned
previously, we assume the action classes of the source-based network to be different
from the target-based network and we rely on unlabeled pairs to transfer feature-level
information from the source to the target modality. As a result, our method can use
large-scale labeled RGB action datasets as the pre-training data to recognize or detect
new actions from non-RGB datasets with only a limited amount of labeled examples.
We further differ from these methods by transferring knowledge to a more difficult
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target modality like 3D-skeleton data and extending cross-modal transfer to the task
of temporal action detection.

2.3 Proposed Method

We consider the tasks of action classification and detection for a non-RGB modality,
e.g. depth maps or sequences of 3D-skeletons, while requiring a reduced amount
of labeled examples. To achieve this, a teacher-student network extracts knowledge
from a pre-trained off-the-shelf RGB, or optical-flow, action model using unlabeled
modality pairs. We first discuss our general approach for this feature-supervised
knowledge transfer and then detail transfer granularities for different modality pairs.

2.3.1 Cross-Modal Teacher-Student

Lets assume that we are given a network that has been trained on a large action-class
labeled dataset of trimmed RGB videos. We call this dataset the source dataset and the
corresponding network acts as the teacher network. We also assume to have access to
another dataset called the target dataset that contains many unlabeled action pairs from
two paired modalities —i.e., the RGB and the non-RGB target modality. The target
dataset also contains some labeled action examples for the target modality, along with
the unlabeled pairs. Note the action classes of the source and target dataset do not
overlap. We train the student network to extract knowledge from the teacher network,
which has learned from the labeled RGB modality of the source dataset, with the goal
to adapt it to the non-RGB target modality.

Formally, given a training pair (VrGg, V7urger) from unlabeled target data, the
trained teacher network outputs a feature vector Fggp for the RGB video Vggp. The
student network uses the target modality V7y,., as its input and is supervised by the
corresponding RGB feature Fggp from the teacher network. The student network
is optimized to match its features Fre; With that of the teacher network using an
appropriate similarity loss. We select for Frgp and Frrqe; the outputs of the layer
just before the fully connected layers of the teacher and the student network. By
doing so, we teach the student network to learn high-level semantics of the actions
learned by the teacher, rather than learning the class-specific information present in
the fully connected layers. Note that the student network can have same or different
architecture as that of the teacher network, but the dimension of its output features
Frurger should be matched with Fggp, if different. After the knowledge transfer step,
the student network can be fine-tuned for a downstream task using the labeled data
from the target dataset. During fine-tuning, a standard cross-entropy loss is used for
the action classification and a regression loss for the temporal action detection.
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FIGURE 2.1: Feature-supervised action modality transfer. A teacher network is trained
on a large and labeled RGB, or derived optical-flow, action dataset. (left) Clip-to-Clip
transfer from the RGB teacher to the depth student. A paired RGB-depth clip is sampled
from the whole RGB-depth video pair and the student network is optimized to match
its features from the depth clip with that of the teacher features obtained from the
corresponding paired RGB clip. (right) Video-to-Clip transfer from RGB to depth maps.
The whole RGB video is divided into N clips to aggregate clip level features from teacher
network into a video-level feature. A clip is then randomly sampled from the paired whole
depth video and the student network matches the clip features with the corresponding
video level RGB features from the teacher.

2.3.2 Feature-Supervised Granularity

The input granularity to the action recognition models depends on the architecture of
the network and the nature of the modality involved. For example, most state of the art
works for image based modalities (RGB, optical-flow, depth, efc.) use a small video
clip as their input for predicting the action classes, while skeleton based models rely
on a whole video sequence as the input. Similarly, during inference clip-level models
combine prediction of different clips from the whole video to produce more accurate
results. Thus, in order to explore the architecture of our cross-modal framework
for different pairs of modalities and how to effectively extract knowledge from the
teacher network, we consider three different transfer granularities, i.e., clip-to-clip,
video-to-clip and video-to-video.

2.3.2.1 Clip-to-Clip

We use this granularity for transfer between RGB and depth pairs, since both modal-
ities require a small video clip as input. The transfer strategy for this granularity is
shown in Figure 2.1 (left). In particular, a paired small clip is sampled from the whole
video of two modalities and a depth-based student network is optimized to match the
features of the corresponding RGB clip. Thus, the student network learns to mimic
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the clip-level features of the RGB teacher by minimizing the following loss function:

cli cli . , cli cli
L (PTaget, FRG’;) = Cosine_Distance (PTari,et, FRG’;) (2.1)

where Fglgg and F}Zg; ., are the clip level features predicted by the RGB and depth

networks respectively.

2.3.2.2 Video-to-Clip

Different from the clip-to-clip transfer, the teacher network extracts for this granularity
information from the whole RGB video and then transfers it to the student network.
This transfer strategy is shown in Figure 2.1 (right). This strategy again fits for
knowledge transfer between RGB and depth pairs. More formally, the RGB video
is divided into N clips Cq, Cy, ..., Cy of equal duration. For each clip C; the teacher
network outputs a feature vector F; and a global video level feature is obtained by
combining these clip level features. Then, the student network randomly samples
one of the clips from the corresponding paired depth video and uses the video level
RGB feature from the teacher for supervision. Thus, the student network is optimized
to match each target clip with the corresponding video-level RGB feature from the
teacher network by minimizing the following loss:

L <F;5,I;e,, Fﬁgg") = Cosine_Distance (F;é’get, F%gg") (2.2)
Fvideo — l if'clip (2 3)
RGB N & .
where Plg"gg" is computed by taking an average over N RGB clips. The number of

. . . Total Number of frames
clips N for each video is calculated as Tnput size of the network”

Naturally, we can also combine the clip-to-clip and video-to-clip granularity, such
that both clip-level and video-level information is transferred to the student network.
In this scenario, the student network will be optimized to match features of each target
clip with that of the corresponding paired RGB clip and with the global video level
feature from the whole paired RGB video. The following loss function is minimized
for this optimization:

L (Fclip F]gl(l;]};/ F}\ézggo) - L (Fclip Fggg) + L (Fclip FEZCC}JZO) (2.4)

Target’ Target’ Target’

We will assess the knowledge transfer abilities of these strategies in the ablation
experiments.
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2.3.2.3 Video-to-Video

This granularity is required to transfer knowledge from the RGB to the 3D-skeleton
modality, since the input to a skeleton-based network is the whole skeleton sequence.
The transfer strategy is the same as for the video-to-clip; the only change being the
student network is now replaced by a skeleton based architecture whose input is the
whole skeleton video, instead of a small clip. Now, the student network is optimized
to match the whole skeleton sequence with the global video-level feature of the paired
RGB teacher by minimizing the following loss:

C (P;;;fjggt, P,gigg) — Cosine_Distance (F;;iggt, P,gfggO) 2.5)

where F%é‘f;gt is the output feature of the student network which operates over a whole

sequence.

2.4 Experimental Setup

2.4.1 Target Datasets

NTU RGB+D [196] contains 56,880 trimmed videos with paired RGB, depth and
3D-skeleton modalities for 60 action classes. All actions are captured in indoor scenes
with multiple cameras, different backgrounds, multiple subjects and camera setups.
The dataset is split by a cross-view setup into 37,920 training and 18,960 validation
videos [196]. For the knowledge transfer, we use the video modality pairs from the
training set without any action class labels. For fine-tuning, we sample the action class
examples of the target modality from the training set. The validation set is only used
for evaluation purposes and is not seen during any training.

PKU-MMD [34] contains 1,074 long untrimmed videos with paired RGB, depth
and 3D-skeleton modalities for 51 action classes and about 20K action instances.
All actions are captured in indoor scenes as well, with multiple cameras, different
backgrounds, different views and 66 subjects. The annotations for each video contain
the start and end locations of multiple activities, along with the action class. The
dataset is split by a cross-subject setup into 942 training and 132 validation videos.
We sample the labeled videos from the training set for the task of temporal action
detection, for fine-tuning only. The validation set is used only for evaluation.

2.4.2 Source Datasets

Kinetics-400 [ | 1 3] is a large RGB-only dataset containing 400K labeled examples
for 400 different action classes. The dataset is collected from YouTube with videos
coming from a variety of sources, setups, efc. Note the domain difference between
this dataset and our target datasets is considerable.
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FIGURE 2.2: Action modality samples from different source and target datasets.

(a) Sample frames from the Kinetics-400 dataset. (b) Sample frames from the NTU-

120_minus_60 dataset. (c) Paired multimodal samples from the NTU RGB+D dataset.
Note the domain change between the dataset in (a) and the other two datasets.
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NTU-120_minus_60 Starting from the NTU RGB+D 120 [141] dataset, we
remove all the videos that contain action classes overlapping with NTU RGB+D.
Thus, this dataset shares the same domain as our target dataset, but contains different
action classes. We only use the RGB modality of this dataset to train the teacher
network.

We provide some target and source dataset samples in Figure 2.2.

2.4.3 Implementation Details

Teacher Network: We use 3D-ResNets [83] with RGB or optical-flow as input for
our teacher networks. For Kinetics-400, we rely on the pre-trained 3D-ResNext101
models available from [38] and for NTU-120_minus_60 we train a 3D-ResNet18
from scratch. We use 16-frame clips as the input and all other hyperparameters from
[83].

Depth Student Network: For the depth maps, we use a 3D-ResNet18 architecture
as the student network with 16-frame clips as the input. We first apply a multi-scale
corner cropping to the 16-frame clip as mentioned in [83], followed by a resizing
operation into a 3 x 16 x 112 x 112 sample and a horizontal flipping with 50%
probability. The network is trained with an SGD optimizer using a weight decay of
0.001, 0.9 momentum, an initial learning rate of 0.1 and a batch size of 128. During
cross-modal transfer we train the whole network for 400 epochs. For fine-tuning, we
only train the fully connected layer and the last ResNet block for a total of 100 epochs.
For evaluation, the predictions of all clips from the whole video are averaged for final
classification.

3D-skeleton Student Network: For the 3D-skeleton data, we use a Spatio Temporal
Graph Convolution Network [260] as the student network with whole 3D-skeleton
sequences as the input. Following the setting of [260] no data augmentation is applied.
The network is trained with an SGD optimizer using a weight decay of 0.00001,
momentum 0.9, an initial learning rate of 0.1 and a batch size of 100. We train the
network for 120 epochs during cross-modal transfer and 70 epochs during fine-tuning.
During both steps, all layers of the ST-GCN network are trained. For evaluation, a
class is predicted for a given 3D-skeleton sequence.

2.5 Results

2.5.1 Ablation

For all ablation experiments we consider the task of classifying actions of NTU
RGB+D from depth maps using only a limited amount of labeled depth examples.
An action classification network trained with RGB or optical-flow modality from the
NTU_120_minus_60 source dataset acts as the teacher network. For the cross-modal
transfer step, all RGB-depth or optical-flow-depth pairs from the training set of NTU
RGB+D are used without action labels as unlabeled modality pairs for knowledge
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Target-Modality: Depth

Source-Modality 20 per-class 50 per-class 100 per-class

RGB 62.85+05 66.01+06 68.64+03
Flow 68.43+02 71.53+0.1 73.43+03
Two-stream 69.16+05 72.10+05 74.41+05

TABLE 2.1: Which source modality. RGB and optical-flow teacher networks trained on

the NTU_120_minus_60 dataset. The two-stream fuses the individual predictions. The

video-to-clip strategy is used for knowledge transfer. The optical-flow teacher provides

the best individual features for knowledge transfer to depth maps, fusion improves results
further.

Target-Modality: Depth

Loss-Function 20 per-class 50 per-class 100 per-class

MSE 65.69+03 69.27+05 71.65+04
Cosine 68.43+0.2 71.53+0.1 73.43+03

TABLE 2.2: Which loss function. MSE vs. cosine loss for feature-supervised knowledge

transfer. For both, the teacher network is trained on the optical-flow modality from

NTU_120_minus_60. The video-to-clip strategy is used for knowledge transfer. We
obtain better results with a cosine loss.

transfer. For fine-tuning we sample some depth examples with action labels from the
training set of NTU RGB+D (20, 50 or 100 examples per action class). For evaluation,
we report the video-level accuracy on the validation set from the cross-view split of
NTU RGB+D. Each experiment is repeated five times with different random seeds
and mean accuracy with variance is reported.

2.5.1.1 Which source modality?

We first consider which source modality to use in the teacher network for knowledge
transfer. Table 2.1 shows the results for RGB and optical-flow as teacher modalities.
While both modalities provide good features for knowledge transfer, the optical-flow
teacher performs better than the RGB teacher. We attribute this to the motion features
that contain better cues about the action representations for transfer, as compared to
the RGB teacher, which provides features that mainly model spatial action information.
Naturally, we can also combine the two source modalities into a two-stream network
by fusing the results of the RGB and optical-flow student streams during inference.
This further improves the action classification performance, at the expense of double
compute and parameters. In summary, the optical-flow teacher provides the best
individual features for knowledge transfer and we focus on the optical-flow as the
main source modality in the remaining experiments, unless indicated otherwise.
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Target-Modality: Depth

Granularity 20 per-class 50 per-class 100 per-class

Clip-to-Clip 64.80+1.0 70.30+0.4 72.92+0.5
Video-to-Clip  68.43+0.2 71.53+0.1 73.43+03
Combined 69.16+0.2 73.60=+0.1 76.24+03

TABLE 2.3: Which granularity. Combining clip and video level features from the teacher
network, as detailed in Equation. 2.4, acts as the best feature-supervision strategy.

2.5.1.2 'Which loss function?

Since the goal of the student network is to match the features of the teacher network,
any similarity (or distance) function will work for this optimization. We just consider
two common loss functions: the mean square loss and the cosine distance loss in
Table 2.2. We observe the cosine loss to work better for our task. Thus, for all other
experiments we choose the cosine loss to optimize the student networks.

2.5.1.3 Which granularity?

Next we evaluate the granularity of the feature-supervised transfer. From the results
in Table 2.3 we observe the video-to-clip transfer works better than the clip-to-clip
transfer, especially when only few labeled examples are available for fine-tuning.
This is expected, as the student network in the video-to-clip strategy is optimized
to match the video-level features that aggregate global information about the action
representations from the whole video. Hence, this strategy provides better supervision,
as compared to clip-to-clip features that transfer only local information about the
action from a small clip. We also observe that combining the two strategies achieves
the best knowledge transfer. To summarize, the video-to-clip transfer works better
than the clip-to-clip transfer and combining the two gives an additional improvement.
For the rest of the experiments we use this granularity for the feature-supervised
transfer, unless indicated otherwise.

2.5.1.4 Which layers to transfer?

We also explore which layers from the teacher network are best suited for the transfer.
In particular we tried to match the output features of each ResNet block of the teacher
network with the corresponding ResNet block of the student network, along with
the last layer as before. We found that matching these additional layers does not add
anything significant to the transfer and relying on the last-layer only still provides the
best results.
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Target-Modality: Depth

Method & Source Domain 20 per-class 50 per-class 100 per-class
From-scratch 11.00+2.0 33.51+04 54.10+05
Flow-pretraining (Kinetics) 23.68+2.0 41.95+10 54.45+05
RGB-pretraining (Kinetics) 24.84+20 42.96+1.0 55.05+05
Flow-pretraining (NTU) 24.34+10 53.72+038 64.88+0.4
RGB-pretraining (NTU) 41.55+10 57.20+0.8 66.41+04

RGB-feature-supervised (Kinetics)  33.31+1.0 47.38+05 55.10+05
Flow-feature-supervised (Kinetics)  52.17+1.0 59.51+06 64.14+05
RGB-feature-supervised (NTU) 63.05+10 66.71+06 68.64+03
Flow-feature-supervised (NTU) 68.43+0.2 71.53+0.1 73.43+03

TABLE 2.4: Domain Generalization. Performance of the depth student under varying
source domains. From-scratch indicates training directly on the target modality with-
out any pretraining. Pretraining indicates pretraining on RGB/Flow modality of the
source dataset and then directly fine-tuned with labeled depth maps from the target
dataset. Feature-supervised indicates the pretraining via our cross-modal transfer with the
RGB/Flow trained on a source dataset as the teacher network, followed by fine-tuning
with the labeled depth maps from the target dataset. All models are evaluated on the
cross-view validation set of NTU RGB+D. Our method outperforms both training from
scratch as well as simple pretraining. Also, the teacher network from a more similar
domain provides better transfer features.

2.5.2 Domain Generalization

Next, we evaluate the effect of training with different source domains and compare
our method with simple pretraining with RGB/Flow modalities. Table 2.4 shows the
performance of simple RGB/Flow pretraining and our feature-supervised method on
NTU-120_minus_60 and Kinetics-400 source datasets. It is evident from the table
that for both datasets our method outperforms simple pretraining with RGB and
Flow modalities by a considerable margin especially when using limited amounts of
labeled examples during fine-tuning. At the same time, we observe that relying on
NTU-120_minus_60 as source dataset performs better than the Kinetics-400, which is
expected because it is more similar in domain to our target dataset, see also Figure 2.2.
Hence, it provides features which are easier to match during transfer. Our approach is
agnostic to the source dataset for knowledge transfer, but the more similar the domain
between source and target dataset, the better the action classification results.

2.5.3 Modality Generalization

We now change the student modality to 3D-skeleton data to assess to what extent our
method generalizes over modalities. As discussed in Section 2.3.2, the video-to-video
level strategy is needed for knowledge transfer to 3D-skeleton data. Table 2.5 shows
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Target-Modality: 3D-skeleton

Source-Modality & Domain 20 per-class 50 per-class 100 per-class

From-scratch 33.00+3.0 50.11+20 67.50+15
Kinetics-RGB 52.15+10 65.86+1.0 74.98+0.4
Kinetics-Flow 52.3912.0 66.11=x05 75.46+0.2

NTU_120_minus_60-RGB 57.53+15 70.30+05 77.95+05
NTU_120_minus_60-Flow 58.57+15 71.11+06 78.59+0.4

TABLE 2.5: Modality Generalization. Performance of the 3D-skeleton student as the

target modality. From-scratch indicates training the 3D-skeleton network directly on

the target modality. The video-to-video strategy is used for the transfer. All models are

evaluated the on cross-view validation set of NTU RGB+D. Our method generalises to a
difficult 3D-skeleton target modality.

that our feature-supervised knowledge transfer improves the performance for the
3D-skeleton modality as well, especially for limited amounts of labeled data. Again
we observe the optical-flow from a similar domain (NTU-120_minus_60) acts as the
best source modality for transfer. We also observe that the performance increase is
not as good as the transfer to depth maps (compare with Table 2.4). This is because
completely dissimilar modalities (image-based RGB and optical-flow vs. joint-based
3D-Skeleton poses) and different network architectures (a 3D-CNN teacher and a
graph-CNN student) are involved in this transfer. This makes it harder to match
the features as compared to depth maps (image-based and 3D-CNN student). In
summary, our method also generalizes to a much more difficult target modality such
as 3D-skeleton data.

2.5.4 Task Generalization

In this experiment we evaluate our method for the task of temporal action detection
where the goal is to predict the start and end locations of multiple activities in a long
untrimmed depth video, along with the action classes. The knowledge transfer step
remains the same as before, however, during fine-tuning the student network is now
optimized for the task of action detection using (a limited amount of) labeled examples.
As before, the unlabeled modality pairs from the training set of NTU RGB+D are
used for the feature-supervised knowledge transfer. For fine-tuning we now sample
from the labeled training set of PKU-MMD.

Action Detection Student Network. We rely on the R-C3D network [257] for this
task with depth maps as the input. The architecture contains a backbone network which
is connected to a region proposal network and a classification network. The student
network is first trained for the knowledge transfer separately as before, and, then acts
as the backbone network in the R-C3D framework during fine-tuning. We follow
the same training procedure for the knowledge transfer as described in Section 2.4.3.
For fine-tuning, the whole R-C3D framework is trained with all the hyperparameters
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Target-Modality: Depth

Method 1/4 train-set 1/2 train-set entire train-set
From-Scratch 52.85 66.45 73.39
RGB-pretraining 70.57 79.61 81.67
Flow-pretraining 73.68 81.21 81.72
RGB-feature-supervised 78.89 82.73 85.95
Flow-feature-supervised 79.87 84.85 86.81

TABLE 2.6: Task Generalization. Temporal action detection results (mMAP@IoU=0.5) on
PKU-MMD from depth maps using an R-C3D network. From-scratch indicates training
the action detection network directly on the target modality without any pretraining.
Pretraining indicates the action detection backbone is pretrained with RGB/Flow modality
on NTU-120_minus_60 dataset and then directly finetuned with the labeled untrimmed
depth maps. Feature-supervised indicates the backbone network is pretrained via our cross-
modal transfer with RGB/Flow model trained on NTU-120_minus_60 as the teacher
network, followed by fine-tuning with the labeled untrimmed depth maps. We use a
quarter (235), half (470) or the entire (942) video train set for fine-tuning. All methods
are evaluated on the validation set of the cross-subject split of PKU-MMD. Feature-
supervised transfer outperforms both training from scratch and simple pretraining for the
task of temporal action detection too.

from [257]. We train the network for a total of 8 epochs with a batch size of 4. The
learning rate is initialized to 0.0001 and decreased to 0.00001 for the last 2 epochs.
For inference and evaluation we follow the setting suggested in [257].

Action Detection Results. Table 2.6 shows the mean average precision (mAP at an
IoU threshold of 0.5) on PKU-MMD for varying amounts of labeled training data (a
quarter, half and all available training examples). We observe for all three splits there
is a considerable gap in performance as compared to training from scratch as well
as with simple RGB/Flow based pretraining, especially for the smallest split making
cross-modal feature-supervised transfer beneficial when only limited amounts of start,
end and class labels for the target modality are available. Thus, we can also use our
pre-training strategy to reduce the number of labeled examples without any drastic
drop in performance. Finally, we again observe the optical-flow proves to be the best
modality for transfer.

2.5.5 Comparison with the state-of-the-art

We now compare our method with the state of the art methods for depth-based action
recognition that rely on additional modalities for transferring knowledge during
training, along with using the labeled depth examples. Figure 2.3 shows the results for
action classification from depth maps on the NTU RGB+D dataset. The method by
Garcia et al. [66] (MDMS) uses a four-step process that relies on labeled RGB-depth
pairs from NTU RGB+D to distill knowledge from the RGB stream to the depth
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FIGURE 2.3: Comparison with the state-of-the-art for depth based action recognition
on NTU RGB+D for the cross-view split. Without-Transfer indicates using only depth
maps from the training set. For the rest, each column represents performance of respective
method by distilling knowledge from one or more RGB action models trained on a source
dataset (as shown in legend). Each method utilizes full-training set of labeled depth maps
from the training set of NTU RGB+D, except the last one that uses only half of the same
train set. Our method boosts the performance for depth modality while distilling from a
different source dataset. Also, when we reduce the number of labeled examples for the
depth modality by half, our method has no drastic decrease in performance.

stream. They achieve a 2% improvement over their baseline (i.e., training a depth
stream without any knowledge transfer). Similarly, another method by Garcia et al.
[67] (DMCL) relies on labeled RGB-optical-flow-depth triplets from NTU RGB+D
to train three networks together, such that, the RGB and the optical-flow streams are
used to transfer knowledge to the depth stream during training. They achieve a boost
of 1.5% over their baseline. Both methods use the full training set of labeled depth
maps and other source modalities (also with labels) from NTU RGB+D to achieve
this performance.

Our method relies on unlabeled RGB-depth or optical-flow-depth pairs from NTU
RGB+D and pre-trained action models from other RGB datasets (like Kinetics-400
and NTU-120_minus_60) to distill knowledge to a depth stream. Followed by fine-
tuning with labeled depth examples from the NTU RGB+D training set. For the full
train set, we achieve a boost of around 2% and 3% over our baseline by transferring
from the optical-flow teachers trained on Kinetics-400 and NTU-120_minus_60,
respectively. We further show by reducing the number of labeled depth examples from
NTU RGB+D for fine-tuning by half, the performance drop is small. Thus, in this
way our method can act as pre-training source for reducing the number of labeled
examples for non-RGB modalities such as depth maps. In other words, our method is
particularly useful for the scenario where labeled examples for the target dataset are
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scarce and available in the target action modality only.

2.6 Conclusion

In this chapter, we presented a method to train action models for a non-RGB target
modality, such as depth maps or 3D-skeletons, by extracting knowledge from a large-
scale action labeled RGB dataset. Unlabeled pairs of the RGB and target modality are
leveraged for cross-modal knowledge transfer by feature-supervision. Our extensive
evaluation showed that we can use pre-trained RGB action models (particularly
optical-flow from a more similar domain) to transfer knowledge to recognize and
detect new actions from other action modalities like depth maps and 3D-skeleton
sequences. In conclusion, we showed how large RGB action datasets can be used as
valuable pre-training source for other non-RGB action datasets with limited labeled
examples.
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Chapter 3

Skeleton-Contrastive 3D Action
Representation Learning

3.1 Introduction

The goal of this chapter is to learn a latent feature space suitable for 3D human
action understanding. Different from traditional RGB frames [121, ], skeleton data
consists of 3D coordinates representing the major joints of each person in a video
[196, , 34]. It offers a light-weight representation that can be processed faster and
in a privacy-preserving manner providing application potential in video surveillance,
assisted living, gaming and human-computer interaction. Moreover, when compared
to RGB, such a representation is robust to changes in background and appearance
[143, ]. However, learning a good feature space for 3D actions requires large
amounts of labeled skeleton data [51, 86, , , s , ], which is much
harder to obtain than large amounts of labeled RGB video. To address this major
shortcoming, we propose a new self-supervised contrastive learning method for 3D
skeleton data.

Several previous works also considered self-supervised learning for 3D skeleton
data [286, , , ]. These works design pretext tasks, such as learning to
reconstruct masked input [286] and motion prediction [ | 36], which still require the
features to represent variations such as the viewpoint and skeleton scale, rather than
focusing on higher-level semantic features relevant to downstream tasks. Instead,
we take inspiration from recent self-supervised literature for RGB images, which
aims to learn the high-level similarity between augmented forms of the same image
and the dissimilarity between these and other images [167, 85, 29]. At the core of
such contrastive learning is the nature of the RGB data, where each sample contains
abundant pixel information, allowing for augmentations like spatial-cropping and
color-jittering to easily generate subtly different versions of an image without changing
its semantic content. However, skeleton sequences are much more sparse than RGB
data and the augmentations commonly applied to images would not change the
estimated skeleton of a person. Thus, for contrastive learning with skeleton sequences,
we need skeleton-specific augmentations to encourage the learned features to encode
information relating to spatio-temporal dynamics of the joints. We also want to enrich
the input space which can be sampled from, to increase the variety of samples with
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FIGURE 3.1: Inter-skeleton contrast learns high-level semantics of skeleton data in a

self-supervised fashion. While contrastive methods normally learn invariance to augmenta-

tions we additionally learn invariance to the input representation. Different representations

of the same sequence are encouraged to be close together in the feature space, while
being far away from other sequences.

the same semantic content, and thus increase the difficulty of the contrastive learning
task.

We make three contributions. Our first contribution is to leverage multiple input-
representations of the 3D-skeleton sequences. In particular, we propose inter-skeleton
contrast to learn from a pair of skeleton-representations in a cross-contrastive fashion,
see Figure 3.1. This allows us to enrich the sparse input space and focus on the
high-level semantics of the skeleton data rather than the nuances of one specific input
representation. Second, we introduce several skeleton-specific spatial and temporal
augmentations for generating positive pairs which encourage the model to focus on the
spatio-temporal dynamics of skeleton-based action sequences, ignoring confounding
factors such as viewpoint and the exact joint positions. Finally, we provide a compre-
hensive evaluation of our learned feature space on various challenging downstream
tasks, showing considerable improvement over prior methods in all tasks.

3.2 Related Work

Self-Supervised Learning. Self-supervised learning aims to learn feature represen-
tations without human annotation, typically by solving pretext tasks which exploit
the structure of unlabeled data. Previous works have proposed a variety of such
tasks for learning image representations, e.g. solving spatial jigsaw puzzles [166],
rotation prediction [72], spatial context-prediction [46], image inpainting [ | 70] and
colorization [279, 280]. Similarly, pre-text tasks have been designed for learning video
representations, such as spatio-temporal puzzles [ 1 14], prediction of frame-order [64],
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clip-order [255], speed [15], future [79] and temporal coherence [!24]. Such pretext
tasks rely on the rich structured nature of RGB data with the hope that by learning
to solve these tasks the encoded features will rely on the high-level semantics of the
image or video and are thus applicable to the downstream task(s). Unfortunately, these
existing RGB-based pretext tasks are not suited for 3D-skeleton sequences which
have a simple structure and are less rich in information.
Instead of designing specific pretext tasks, recent self-supervised methods rely

on instance discrimination and learn the similarity between sample pairs [167, 29,

, , ]. A noise contrastive loss learns invariances to certain image or video
transformation functions, resulting in good feature representations. For example, Chen
et al. [29] show that learning invariance to simple image augmentations, such as color
jitter, results in highly discriminative features. He et al. [85] propose a momentum
contrast which is able to utilize a large number of negatives for the noise contrast
by storing image features from previous batches in a dynamic queue. In this paper,
we rely on contrastive estimation for 3D action representation learning. As existing
works use augmentations specific to RGB images, we introduce three skeleton-specific
augmentations to generate positive pairs for learning the spatio-temporal dynamics of
3D-skeleton sequences. Furthermore, we propose inter-skeleton contrastive learning
which additionally aims to learn invariance to the particular input representation of
the 3D-skeleton sequences.
Supervised 3D Action Recognition. Numerous methods for supervised 3D action
recognition exist. While earlier methods design handcrafted features [ 148, , ]to
model geometric relationships between skeleton joints, recent approaches rely on data-
driven deep neural networks. Three skeleton-representations have become popular
for deep learning. Sequence-based treats the 3D-skeleton data as a multi-dimensional
time-series and models it with a recurrent architecture [142, , , , ]
to learn the temporal dynamics of the joints. Image-based create a pseudo-image
representation of the 3D-skeleton data [51, , , 86, ] which is encoded by
CNN architectures to model the co-occurrence of multiple joints and their motion.
Finally, graph-based [260), , , 32, , , 95, ] represents the 3D-skeleton
data with a graph consisting of spatial and temporal edges. Graph-convolutional
architectures then encode the spatio-temporal motion from the human skeleton graph.
Although these methods achieve excellent performance, they are all fully supervised
and require time-consuming action class annotations. We propose a self-supervised
method for 3D-skeleton data that leverages the diversity of the skeleton-representations
to learn highly discriminative features from unlabeled data.
Self-Supervised 3D Action Recognition. Overcoming the need for large amounts
of annotations has only recently received attention in the 3D action recognition
community. Zheng et al. [286] propose a seq2seq model that learns to reconstruct
masked input 3D-skeleton sequences. In particular, a GAN is trained such that the
decoder attempts to regenerate the input sequences, while a discriminator measures the
quality of the regenerated sequences. Similarly, Nie ef al. [165] propose a cross-view
reconstruction task that relies on a siamese denoising autoencoder to reconstruct the
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correct version of corrupted and rotated input skeletons. Su ez al. [211] also propose a
seq2seq model that regenerates input skeleton sequences. To encourage the encoder
to learn better latent features, the decoder is weakened by fixing its weights.

Lin et al. [136] take a different approach and propose multi-task self-supervised
learning for the sequence-based skeleton representation. Their framework solves
multiple pretext tasks simultaneously, such as motion prediction and skeleton-jigsaw.
Si et al. [201] propose an adversarial self-supervised learning approach that couples
the self-supervised learning and the semi-supervised scheme via neighbor relation
exploration and adversarial learning.

Different from all these works, we do not rely exclusively on a sequence-based
skeleton-representation and pretext tasks such as input-reconstruction and motion
prediction. Instead, we propose to exploit the diversity of skeleton-representations in
an inter-contrastive learning regime and design skeleton-specific spatial and temporal
augmentations for use in this contrastive method.

3.3 Skeleton-Contrastive Learning

In this section we present our inter-skeleton contrast approach for self-supervised
learning of 3D action features. Contrastive methods aim to learn a good feature
space by learning the similarity between augmented views of the same data. Since
augmentations in existing contrastive learning works are primarily designed for RGB
images [29] they are not suitable for the skeleton data that is considered in this
work. Therefore, we first propose several skeleton-specific augmentation functions in
Section 3.3.1. These augmentations enable us to apply existing contrastive learning
methods, such as MoCo [85], to skeleton data. We describe this is Section 3.3.2.
However, contrastive learning can be vulnerable to shortcuts, where simple fea-
tures, irrelevant to the downstream task, may be enough to identify the different
augmented views of the same data. For instance, Chen et al. [29] show that color dis-
tributions can be a shortcut to identify different crops from the same image. To avoid
such shortcuts and make the contrastive learning task more difficult, we additionally
contrast pairs of different input skeleton representations with each other. We call this
inter-skeleton contrastive learning and detail our approach in Section 3.3.3.

3.3.1 Skeleton Augmentations

The goal of contrastive learning is to learn the semantic similarity between items in a
dataset without labels. This is usually done by learning the similarity of two augmented
views (positive pairs) of a sample X. A data augmentation function D, composed of a
single or multiple transformations, creates the augmented views. Hence, the network
learns features for X, which are invariant to the transformations in D. The nature of
the data X and the downstream task determines the appropriate invariances that the
learned features should possess. In our case, X is a 3D-skeleton sequence, where each
sequence represents a particular spatial configuration of human joints and its motion
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FIGURE 3.2: Spatial pose augmentation examples. A shear operation is applied to the
original action so that the augmented pairs differ in viewpoint and camera distance.

over a short period of time. Thus, to learn useful representations for 3D-skeleton
data, the commonly used RGB augmentations, such as color-distortion and Gaussian
blurring [29], are not suitable. Instead, we need to learn invariances to transformations
that encode the spatial and temporal dynamics of 3D skeleton action sequences. We
introduce multiple spatial and temporal skeleton augmentation techniques to generate
positive pairs for 3D-skeleton action sequences: Pose Augmentation, Joint Jittering
and Temporal Crop-Resize. We then combine these to create our final spatio-temporal
skeleton augmentation. Let us assume each raw action sequence X € RT*/*3 consists
of 3D coordinates of | body joints in T consecutive video frames. We define our
individual augmentations D based on X.

3.3.1.1 Spatial Skeleton Augmentations

To apply our learned feature space to downstream tasks such as 3D action recognition,
we require the feature encodings to rely on more discriminatory spatial semantics
like joint configurations, while being invariant to factors such as viewpoint, camera
distance, skeleton scale and joint perturbations. Existing augmentations for RGB
images would not achieve this, thus we propose two new skeleton-specific spatial
augmentations: pose augmentation and joint jittering. These can be applied to each
of the T skeletons in the sequence X so a contrastive learning framework can learn
invariance to these augmentations.

Pose Augmentation. With this transformation, we aim to create positive pairs which
differ in viewpoint and distance to the camera, while retaining the same pose from the



32 Chapter 3. Skeleton-Contrastive 3D Action Representation Learning

Original action Positive pairs

Kicking

FIGURE 3.3: Spatial joint jittering examples. The augmented pairs contain a subset
of common joint connections while other joint connections are randomly moved to an
irregular position.

original sequence. To achieve this, we apply a 3D shear on the action sequence X:

1 ro1 ro
DSpatiall (X) =X- 710 1 r2 |, (31)

rp0 121 1

where the elements of the augmentation matrix are randomly drawn from a uniform
distribution [—1, 1]. Figure 3.2 shows several examples. By applying the same shear-
ing operation to each joint of the skeleton at each time-step in the sequence we are able
to simulate changes in camera viewpoint and distance between the subject and camera.
Therefore, a contrastive network which learns invariance to this transformation is
forced to learn more discriminatory pose semantics of the positive pairs and ignore
redundant information such as the viewpoint and proximity to the camera.

Joint Jittering. We also want a contrastive method to be invariant to noise in the
estimated skeleton. Therefore we propose joint jittering to create positive pairs where
some of the joint connections in X are randomly perturbed. We select j of the | joints
at random and move these joints to irregular positions, while keeping other joints in
their original position. The transformation is defined as:

oo To1 To2
Dspasial,(X) = X[5,j] - |10 111 12|, (3.2)
20 21 22

where j is a subset of the joints such that |j| < ], and the elements of the jitter
matrix are randomly drawn from a uniform distribution [0, 1]. The same jitter matrix
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FIGURE 3.4: Temporal crop-resize. The augmented views start at different time steps
and sample different temporal periods (blue and yellow boxes). Each crop is re-sampled
to a fixed size, effectively altering its speed depending on the length of the temporal crop.

is applied to each joint in j at each time-step T. Examples are shown in Figure 3.3. To
learn invariance to such transformations, the contrastive task is encouraged to rely on
the spatio-temporal semantics of the common joint connections and ignore the noise
from the irregular joint connections.

3.3.1.2 Temporal Skeleton Augmentation

Besides the spatial perturbations, a good 3D skeleton feature space should also be
robust to temporal modifications of the skeleton sequences, such as the speed of an
action and changes to the temporal bounds of the sequence. To this end, we propose
temporal crop-resize.

Temporal Crop-Resize. In this transformation, we create positive pairs with varying
speed and varying starting and ending points. We sample different parts of the action
sequence X via a random crop and resize this crop over the temporal dimension 7"

DTemporal(X) - InterpOIate(X[Lsmn‘ . Lstart + TLratio])- (33)

The length ratio L,y is first randomly sampled from distribution [1,,,;,, 1.0], followed
by randomly selecting a starting frame Lg,,, between (0, T — TL,y0). The sub-
sequence X|[Lart : Lstare + TLyario] is then re-sampled to a fixed length. This re-
sampling causes the temporal crop-resize to also alter the speed of a sequence as well
as its start and end times; a shorter sub-sequence will effectively have a slower speed
once re-sampled. Figure 3.4 shows examples of this transformation. By including this
augmentation the contrastive task is forced to focus on the commonalities of the joint
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motion dynamics over the sampled temporal periods and be robust to changes in the
exact start, end and speed of an action.

3.3.1.3 Spatio-Temporal Skeleton Augmentations.

To learn the spatio-temporal dynamics of the skeleton sequences, we propose to
combine the above spatial and temporal transformations into a single augmentation
function. Such composition results in strong positive pairs which vary in both spatial
and temporal dynamics locally, while retaining the high-level semantics of the original
action sequence. In particular, we first apply the temporal crop-resize augmentation
D7emporar on the original action sequence X followed by a spatial augmentation
Dspatiai; to the resulting sequence:

DSpatio-Temporal (X) - DSpatiall- ( DTempoml (X) ) (3 4)

Here, i can either be fixed to the pose augmentation or the joint jitter or randomized
to select either of the spatial augmentations. As we will show in the experiments,
learning invariance to spatio-temporal transformations produces a better 3D action
feature space and randomizing the composition further improves the result.

3.3.2 Intra-Skeleton Contrast

Before describing our proposed inter-skeleton method, we first describe how the
above augmentations can be incorporated into an existing contrastive method, such as
MoCo [85], with a single input skeleton-representation. We call this intra-skeleton
contrastive learning. Each raw action sequence X € RT*/*3 is first augmented
into two different views X, and X (called query and key) via a data augmentation
function D. Both views of the skeleton data are then instantiated into the same
skeleton-representation, be it image-based or sequence-based or graph-based. A
contrastive method such as MoCo uses two encoders, one for the query and one
for the key. We refer to the query encoder as f; and the key encoder as fi. Let
(Z4,Zk) = (f3(Xy), fr(Xk)) be output embeddings of the encoders for the input
query-key pair. We then train the contrastive network using the noise contrastive
estimation loss InfoNCE [167]:

exp(Zy - Zi/T)

exp(Zq - Zx/T) + ZNGXP(Zq - Zu/T)
Zr~

L(X) = —log (3.5

where T is a temperature softening hyper-parameter and N is the current set of
negatives that are stored in a dynamic queue via previous states of the key encoder
frasin [85]. Only the query encoder is actively trained using Equation 3.5 and the
key encoder is updated as a moving average of the query encoder. This trains the
framework to learn 3D action features which are invariant to the transformations in D
for the chosen skeleton-representation.
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FIGURE 3.5: Inter-skeleton contrast. We learn invariances to input skeleton representa-
tions, as well data augmentations, in a cross-contrastive manner. We first augment the
input sequence into two different views called the query and key using our proposed
spatio-temporal augmentations. Each of these views is then represented with two different
input skeleton-representations, here graph-based and sequence-based. We encourage the
embedding for the graph-based query to be similar to the embedding of the sequence-
based key while being dissimilar to the current set of sequence-based negatives. The same
applies for the sequence-based query and graph-based key and negatives.

3.3.3 Inter-Skeleton Contrast

Up to this point, our method, like previous contrastive learning approaches [29, 85,

], learns the similarity between different augmented forms of the same input. We
now extend contrastive learning for 3D skeleton data beyond these augmentations
and propose inter-skeleton contrast which aims to learn invariance to the input repre-
sentation of the skeleton sequence. Three 3D-skeleton representations are common:
image-based as a T X | pseudo-image where the 3D coordinates of each joint are the
image channels, sequence-based as a multi-dimensional time series, or graph-based
as a spatio-temporal graph. Each requires a different network architecture and encodes
different characteristics of the sequence. For example, RNNs treat skeleton sequences
as a time series and explicitly model the temporal evolution of joints, while GCNs treat
sequences as a graph with both spatial and temporal edges and thus explicitly encode
human pose as well as each joint’s temporal motion. While the action depicted by the
skeleton sequence is the same, the way the input sequence is represented and encoded
is different. To learn invariance to the input representation the contrastive framework
has to learn the similarities between the characteristics of these different represen-
tations as well as our data augmentations which will result in more discriminative
features.
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The overall network is depicted in Figure 3.5. The raw skeleton sequence is
first augmented into two views as in Section 3.3.2. Each view is then represented
in two ways, in this case with a graph-based representation and a sequence-based
representation. We refer to the different representations of the raw action sequence X
as X™G for image-based, X3F€ for seq-based and X537 for graph-based. For the rest
of this section we will take the example of the pair X5¥¢ and X57¢ as displayed in
Figure 3.5. We adapt our model to contrast the different input representations by using
a pair of momentum contrastive models together, one for each input-representation
X5EQ and X57C | In particular, the model now consists of two query encoders ftf EQ
and f;TG and two key encoders f,f EQ and f,fTG. A query-key pair (X, Xj) is obtained
by augmenting a raw action sequence X with D as before. We instantiate two different
skeleton-representation pairs (XgEQ, X]fEQ) and (XgTG, X,fTG). Then, for the query
in each input representation, we generate the positives and negatives from the key

encoder of the other input representation and vice versa. The encoders ( ,; B, ;fTG)
are trained jointly using a cross-contrastive loss function:
L(X5FC, X5T9) = L(X52) 4 £(X79), (3.6)
exp(Z3EC. 7316 /¢
L(XEQ) = _log P(Zy = 2 /) (3.7)

exp(Z;?EQ 7231 1) + ) exp(Z;?EQ L2316 /1)’
Z,~NSTG

exp(ZgTG - 2272/ 7)

exp(ZgTG - Z,fEQ/T) - Z/\:/SEQ exp(Z;?TG - Z5EQ /1)
T~

L(X56) = —log , (3.8)

where ZgEQ = qu E Q(X,? EQ) is the embedding of the sequence-based query and NSE€
is the current set of negative sequence-based embeddings. These are defined similarly
for the other representations and augmentations of X. This formulation serves two
purposes. First the input space of the contrastive task is enriched to learn from multiple
representations of the same sequence, in addition to the multiple ‘views’ the data
augmentation D provides. Second, different from Equation 3.5, the cross-contrastive
loss i.e., Equation 3.6 forces the framework to rely on mutual information between
the embeddings of the two skeleton representations. Thus the contrastive framework
is encouraged to focus on higher-level semantics and avoid resorting to shortcut
solutions to identify the similarity between query-key pairs.
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3.4 Experiments

We first describe the datasets and implementation details. We then demonstrate the
effectiveness of our contrastive learning approach on several 3D action understanding
downstream tasks. Finally, we ablate the effects of our proposed skeleton augmenta-
tions and inter-skeleton contrast.

3.4.1 Datasets and Evaluation

NTU RGB+D 60 [196]. This is the most commonly used dataset for 3D action
recognition. All actions are captured in indoor scenes with three cameras concurrently.
The dataset contains 40 different subjects and 60 action classes. Each action sequence
is performed by an individual or pair of actors with each actor represented by the
3D coordinates of 25 skeleton joints. The dataset consists of 56,880 video samples
and is evaluated under the two standard protocols as suggested by [196]. The first is
cross-view, where samples from two angles (0°,45°) are used for training (37,920
samples) and a third angle (—45°) is used for testing (18,960 samples). The second
is cross-subject, where the actors in the training and testing sets are different, with
40,320 training and 16,560 testing samples.

NTU RGB+D 120 [141]. This is an extension to NTU RGB-D 60 and is currently
the largest benchmark for 3D action recognition with 114,480 samples over 120
action classes. Actions are captured with 106 subjects in a multi-view setting using
32 different setups (varying camera distances and background). Each action sample
has 1 or 2 subjects, and each is represented by 25 3D-skeleton joints. The dataset is
challenging due to the variation in subject, background, viewpoint and fine-grained
actions captured. For evaluation, two recommended protocols [141] are used: cross-
setup, where even-numbered setups are used for training (54,471 samples) and odd-
numbered setups are used for testing (59,477 samples), and again cross-subject, with
63,026 training and 50,922 testing samples.

PKU-MMD [34]. This dataset was originally proposed for action detection but has
also been used for action recognition [136]. It contains 52 human action classes. Each
action is represented by the 3D coordinates of the 25 joints of each actor involved
in the action. The dataset consists of two parts: PKU-MMD I and PKU-MMD 11,
with almost 20,000 and 7,000 action instances. Both parts are challenging for action
recognition, as the number of action classes is large while the training sets are relatively
small, however PKU-MMD II is more challenging due to the large view variation
causing more skeleton noise. We split both sets into a training and a testing set using
the recommended cross-subject protocol [34]. The training sets of PKU-MMD I &
II contain 18,841 and 5,332 samples, while the testing sets contain 2,704 and 1,613
samples.

Evaluation Criteria. For all datasets, protocols and downstream tasks we report the
top-1 accuracy.
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3.4.2 Implementation Details

Network Architectures. We instantiate the encoder pairs (f;, fx) based on the
skeleton-representations used. For the sequence-based encoder fSEQ we rely on
a 3-Layer BI-GRU with H=1024 units per layer [2]1]. For the image represen-
tation encoder fIMG, we adopt the CNN based Hierarchical Co-occurrence Net-
work (HCN) [128]. For the graph representation encoder f57C, a joint based graph-
convolutional network A-GCN [199] is used. We represent each skeleton sequence
X as two people, with the second actor being all zeros for single actor actions. The
augmented forms of the raw skeleton sequence X (X, and X)) have temporal length
64. Unless mentioned otherwise we use |j| = 15 for the joint jitter augmentation and
L,in = 0.1 for the temporal crop-resize augmentation.

Self-Supervised Pretraining. Our inter-skeleton contrastive network is based on
MOCO [85] and is trained on the training data without any labels. A projection head
(an MLP) is appended to each encoder to produce embeddings of a fixed size of 128.
The embeddings are L2-normalized before computing the contrastive loss. We train
the whole network with a temperature value of T=0.07, an SGD optimizer, a learning
rate of 0.01 and a weight decay of 0.0001. For NTU RGB+D 60 & 120, the size of the
set negatives A\ is 16,384 and the model is pre-trained for a total of 450 epochs. For
PKU-MMD I & 11, the size of N\ is set to 8,192 and 2,048, and we pre-train for 600
epochs. The training and evaluation details of the downstream tasks are discussed in
the Appendix A. Code is available at https://github.com/fmthoker/skeleton-contrast.

3.4.3 Downstream Tasks

In this section, we evaluate the 3D action features learned by our inter-skeleton contrast
for various downstream tasks in comparison with the respective state-of-the-art in
self-supervised learning. For a fair comparison we follow the setups of prior works and
only train and evaluate downstream tasks with the sequence-based input representation
X5EQ | In particular, we pre-train our inter-skeleton contrast network with X°EQ and
X5TG skeleton representations as this gives the best result (see Section 3.4.4) and
evaluate only the sequence-based query encoder qu EQ We also show some qualitative
results in the Appendix A.

3.4.3.1 3D Action Recognition.

We compare our method to prior works in self-supervised learning for skeleton data
by training a linear classifier on top of the frozen features from our inter-skeleton
contrast. We compare with the proposed methods of Zheng et al. [286], Suetal. [211]
and Nie et al. [165], all of which use reconstruction of the skeleton sequence as a
pretext task. We also compare to the multi-task self-supervised method by Lin e?
al. [136], which uses skeleton-jigsaw and motion prediction as auxiliary tasks.

We present results on the NTU RGB+D 60, NTU-120 and PKU-MMD (I and II)
datasets in Table 3.1. It is evident our inter-skeleton contrast outperforms all methods
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NTU RGB+D 60 NTU RGB+D 120 PKU-MMD I PKU-MMD II

x-view  Xx-sub  Xx-setup  x-sub x-sub x-sub
Zheng et al. [286] 564 52.1 39.7 35.6 68.7 26.5
Lin et al. [136] - 52.5 - - 64.8 27.6
Suetal [211] 59.3 56.1 44.1 41.1 59.9 25.5
Nie et al. [165] 79.7 - - - - -
This chapter 85.2 76.3 67.9 67.1 80.9 36.0

TABLE 3.1: 3D action recognition. Our method learns better 3D-action features from
unlabeled data than alternatives, no matter the dataset or evaluation protocol. All results
of Zheng et al. and Su et al. obtained with code provided by Su et al.

NTU RGB+D 60 NTU RGB+D 120
x-view  x-sub  x-setup  Xx-sub

Zheng et al. [2860]  48.1 39.1 355 31.5
Suetal [211] 76.3 50.7 41.8 39.5
This chapter 82.6 62.5 52.3 50.6

TABLE 3.2: 3D action retrieval. Results for Zheng et al. and Su et al. in [211] obtained
with code provided by Su et al. Our method learns best features for retrieval than prior
self-supervised methods.

by a considerable margin on each benchmark. We conclude the self-supervised feature
space learned by our method is state-of-the-art for 3D action recognition.

3.4.3.2 3D Action Retrieval.

We follow the setup introduced by Su et al. [211]. We apply the kNN classifier (k=1)
to the pre-trained features of the training set to assign classes. We match each test
sample to the most similar training class using cosine similarity. Besides comparison
with Su et al. [211], we also compare with Zheng et al. [286], using numbers and code
provided by Su et al. We present results for NTU RGB+D 60 and NTU RGB+D 120
in Table 3.2. For both datasets, our method outperforms the alternatives, especially
for the more challenging cross-subject and cross-setup protocols. Both [286, 21 1] rely
on an input reconstruction pretext-task for learning their feature space, which easily
captures varying viewpoints. However, with a simple reconstruction, it is difficult to
capture variation with respect to subjects and setups as our inter-skeleton contrast can.

3.4.3.3 Semi-Supervised 3D Action Recognition.

In semi-supervised setting, a network utilizes both labeled and unlabeled data during
the training process. Following prior work for semi-supervised learning in 3D action
recognition, we first train our encoder on our unsupervised inter-skeleton contrastive
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NTU RGB+D 60 PKU-MMD I
X-view x-sub x-sub

(1%) (5%) (10%) 20%)  (1%) (5%) (10%) (20%) (1%) (10%)
Zheng et al. [286] - - - - 35.2 - 62.0 - 344 69.5
Lin et al. [136] - - - - 33.1 - 65.1 - 36.4 70.3
Sietal [201] - 63.6 69.8 74.7 - 57.3 64.3 68.0 -
This chapter® 21.7 10 47.6 10 59.8 05 69.1 05 17.6 05 42.8 z05 51.6 1.0 59.5 10 22.5 10 55.4 10
This chapter 38.1 +10 65.7 05 72.5 +04 78.2+03 35.7 +05 59.6 +05 659 +10 70.8 +1.0 37.7 +10 72.1 +10

TABLE 3.3: Semi-supervised 3D action recognition. We report average accuracy of five

runs with random subsets of labeled samples. Pre-training with our inter-skeleton shows

improvement over prior semi-supervised works as well as training only with the labeled
subset (1).

learning task. Then, we fine-tune the final classification layer and the pre-trained
encoder together using a portion of the data labeled with the action class. Again, we
compare with Zheng et al. [286] and Lin et al. [136] as well as the method of Si et
al. [201] on NTU RGB+D 60 and the PKU-MMD I datasets. To compare with prior
works, we report results when using 1%, 5%, 10% and 20% of the training data with
labels for NTU RGB+60 and when using 1% and 10% of the labels for PKU-MMD I.
The rest of the training set is used as the unlabeled data.

The results in Table 3.3 reveal that our method outperforms all previous methods
on each benchmark. We also demonstrate a large improvement over supervised only
training (1), i.e. training with only the available labeled data from randomly initialized
weights. From these results we can see that our inter-skeleton contrastive learning is
especially suited to learn from both unlabeled and labeled skeleton data in order to
boost the performance of 3D action recognition.

3.4.3.4 Transfer Learning for 3D Action Recognition.

To evaluate if knowledge gained from a source dataset generalizes to a different target
dataset, we also consider transfer learning. In this setting, an encoder network is
first trained on the source dataset for our inter-skeleton contrastive task, followed
by jointly finetuning the pretrained encoder and a classifier on a target dataset for
action recognition. As in Lin et al. [136], we use NTU RGB+D 60 and PKU-MMD I
as the source datasets and PKU-MMD II as the target dataset. Table 3.4 shows our
features are just as or more transferable than those of Zheng ef al. [286] and Lin et
al. [136], especially for transfer from PKU-MMD I to PKU-MMD II which are from
same domain. Thus, the knowledge gained by our method from a source dataset can
improve action classification accuracy on a different target set, especially one with a
similar domain.
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Transfer to PKU-MMD 11
PKU-MMD1 NTU RGB+D 60

Zheng et al. [2806] 43.6 44.8
Lin et al. [136] 44.1 45.8
This chapter 45.1 45.9

TABLE 3.4: Transfer learning for 3D action recognition. All results by Zheng et
al. provided by Lin et al. in [136]. Knowledge gained via inter-skeleton contrastive
pretraining transfers well, especially when source and target datasets are more similar.

3.4.4 Ablation Studies

We now ablate the effect of each of our skeleton augmentations and demonstrate the
effectiveness of our inter-skeleton contrastive learning. These ablations are performed
on the cross-view protocol of NTU RGB+D 60 for the downstream task of 3D
action recognition. As before, after pre-training the models with our contrastive self-
supervision methods, we train a linear classifier with action labels on top of the frozen
features of the query encoder f;.

3.4.4.1 Benefit of Skeleton Augmentation.

First, we show the benefit of each of the proposed skeleton augmentations when
learning from a single input skeleton representation. We choose as skeleton aug-
mentation function D, either pose augmentation, joint jitter, temporal crop-resize or
combinations thereof, and train an intra-skeleton contrastive model as described in
Section 3.3.2.

Table 3.5 shows the accuracy of our augmentations with each input representation.
We find that all of the proposed spatial and temporal skeleton augmentations individu-
ally perform better than using no augmentation. Thereby, reinforcing our claim that
learning invariances to spatial changes like viewpoints, scale and joint perturbations,
or, temporal changes such as delay and speed result in learning good action features.
The composition of augmentations further improves the accuracy by a considerable
margin for all input representations, with the best combination being the inclusion
of all three augmentation functions. For example, the final accuracy with the X"M¢
representation is a ~10% increase over using only pose augmentation and ~28% over
using no augmentation.

The benefit of our proposed skeleton augmentations are also reflected in the con-
trastive pre-training plots in Figure 3.6, which demonstrate that without augmentation
the contrastive task is too easy, resulting in early saturation of the loss and poor
features. With our spatial and temporal augmentations the contrastive task becomes
more difficult as the network is encouraged to focus more on the pose and spatio-
temporal movements of the joints, thereby improving downstream accuracy. Thus the
combination of all our augmentations result in learning our best 3D action features.
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Augmentations Downstream Representation
Temporal  Pose Joint 6 ws7tG SE
Crop-resize Jitter X X XSHe
- - - 51.0 514 50.0
v - - 62.5 535 64.1
- v - 69.8 63.8 71.7
- - v 74.6  66.1 75.2
v v - 73.2 693 73.8
v - v 77.0 68.3 80.0
v v v 79.6 725 82.5

TABLE 3.5: Benefit of skeleton augmentation. We ablate the effect of our augmentations
with 3D action recognition on NTU RGB+D 60. Combining all three augmentations gen-
erates strong positive pairs for increased accuracy, no matter the 3D action representation.

> | - No Augmentation
‘ Temporal Cropresize only

41 —— Pose Augmentation only
& — Joint Jitter only
3 - Temporal Cropresize + Pose Augmentation
o 3] — Temporal Cropresize + Joint Jitter
2 Temporal Cropresize + Pose Augmentation + Joint Jitter
7]
c
o
O 1.

0. L —

0 50 100 150 200 250 300 350
Epoch

FIGURE 3.6: Skeleton augmentation loss curves. Our proposed spatial and temporal

skeleton augmentations make the contrastive task more difficult which prevents early

saturation of the loss. The network is forced to focus more on commonalities in pose and
joint motion dynamics to learn the similarities.

3.4.4.2 Intra-Skeleton vs. Inter-Skeleton.

Next, we examine the effectiveness of learning two skeleton representations together in
our inter-skeleton framework over learning from each input representation separately
(intra-skeleton). While our inter-skeleton network pre-trains two input skeleton repre-
sentations alongside one another, to allow for fair comparison to the intra-skeleton
network we train and test the downstream action recognition model with each in-
put representation separately. The results of combining multiple representations in
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Downstream Representation

Pretraining XIMG  XSTG XSEQ
Intra (X'™G only) 79.6 - -
Intra (X57C only) - 72.5 -
Intra (X°EQ only) - - 82.5
Inter (XMG X5TG) 80.0 78.0 .
Inter (XIMG | XSEQ) 81.7 - 83.0
Inter (X°EQ, X5TG) - 78.9 85.2
Inter (XIMG XSEQ xSTGy 812  81.6 85.4

TABLE 3.6: Intra-skeleton vs. Inter-skeleton. Training alongside a second input rep-

resentation in our inter-skeleton contrast results in better features for all input represen-

tations, regardless of the pair used. Note that a representation can only be used in the

downstream task when it is present in pre-training. Ablation performed on 3D action
recognition with NTU RGB+D 60.

downstream tasks are presented in Appendix A.

Table 3.6 shows the accuracy of our inter-skeleton contrast compared to the
intra-skeleton baseline for each skeleton representation. We first observe that pre-
training with any two skeleton representations side by side in our inter-skeleton
contrast is considerably better than only learning with a single representation as in
the intra-skeleton contrast. For example, the accuracy with X°7C increases by 6%
when pre-trained together with X°EQ in our inter-skeleton contrast model. A similar
increase of 5% occurs when pre-training alongside X'MG_ We find this to be the case
with each skeleton representation; regardless of the second representation it is trained
alongside in the inter-skeleton contrast, there is an increase in performance. We also
tried training all three skeleton representations together. While this does give the best
result, the improvement is outweighed by the computational cost of training all three
representations simultaneously. Overall, these results reinforce our claim that learning
invariance to skeleton augmentations alone leads to sub-optimal features and learning
additional invariance to skeleton-representations results in a better feature space.

3.5 Conclusion

In this chapter, we presented a method for self-supervised learning of 3D skeleton
data. We design a contrastive learning framework that relies on novel skeleton aug-
mentations and multiple skeleton-representations to learn spatio-temporal dynamics
of the skeleton sequences. Our comprehensive evaluation with different skeleton
augmentations and skeleton-representation pairs reveal that learning invariance to our
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spatio-temporal augmentations and contrasting sequence-based and graph-based repre-
sentations with each other results in best action features. The final model achieves con-
siderable performance gains and outperforms prior state-of-the-art in self-supervised
learning for multiple downstream tasks on NTU RGB+D 60 & 120 and PKU-MMD.
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Chapter 4

How Severe is Benchmark-Sensitivity
in Video Self-Supervised Learning?

4.1 Introduction

Video self-supervised learning has progressed at a tremendous pace in recent years,
e.g. | , 1, , , , ], as it offers a crucial starting point from which
to learn. This is especially important for video understanding applications, where
annotating large amounts of data is extremely expensive, error-prone and sensitive
to annotator bias. Hence, learning video representations through self-supervision is
crucial, especially for use cases where the downstream video data is limited because of
the domain, task or actions the video contains. However, the majority of current works
in video self-supervised learning, e.g. [ , , , 8, ], do not test beyond
standard benchmarks. The standard protocol is to use unlabeled Kinetics-400 [113]
for pre-training and then measure performance by finetuning on two action recogni-
tion datasets: UCF-101 [209] and HMDB-51 [122]. While these benchmarks have
facilitated the impressive progress of video self-supervised learning in recent years,
they cannot indicate the generalizability of such methods as these pre-training and
downstream datasets are all similar in appearance and the type of actions they contain.
Some methods have started to report finetuning performance on additional datasets
like Something-Something-v2 [74] in [237, , 00], Diving-48 [132] in [4 1, 1,
AVA [77] in [253, , 60] and EPIC-Kitchens-100 [39] in [262]. However, such
evaluations are insufficient to understand the generalization of video self-supervised
methods alone since they only add a single additional dataset, often without compari-
son to prior methods.

In this chapter, we address the essential need to gauge the sensitivity of existing
video self-supervised methods to the current benchmark by thoroughly evaluating
their performance for generalization across diverse downstream settings. Similar
benchmarking studies have been performed for self-supervised pre-training in im-

ages [36, 99, , 53, 73, , , , 7, , , , 54], which investigate
model transferability [99, 53, , ] or the importance of factors like pre-training
dataset [306, , 73] and backbone architecture [ | 1 7]. Unfortunately, lessons from

these works do not directly transfer to video self-supervised learning. First, video
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self-supervised tasks are distinct from those of images as they are designed to under-
stand the temporal dimension of video [173, 41, , ] in addition to the spatial
understanding needed in images [29]. Second, video is multi-modal and several meth-
ods [171, 8, ] are designed to exploit cross or multi-modal understanding, which
is again absent in image-based methods. For videos, [60] extends four image-based
self-supervised methods to videos and investigate their performance focusing on
different pre-training setups. We take inspiration from this and benchmarking works
in image self-supervised learning and perform a much-needed study for understand-
ing the generalizability of self-supervised methods for video in relation to different
downstream factors.

As our first contribution, we identify the problem of benchmark-sensitivity in
video self-supervised learning and examine this sensitivity along the factors of domain,
samples, actions and task. As our second contribution, we perform an extensive
evaluation which spans a total of over 500 experiments with 9 video self-supervised
learning methods across 7 video datasets and 6 video understanding tasks. We find that
standard benchmarks in video self-supervised learning do not indicate generalization
along the said sensitivity factors and vanilla supervised pre-training outperforms
self-supervised pre-training, particularly when domain change is large and there are
only a few downstream finetuning samples available. Third, we propose a subset
of our experiments as the SEVERE-benchmark for future self-supervised learning
methods to benchmark generalization capability. We also discuss the implication
of this benchmark for evaluating the generalizability of representations obtained by
existing methods as well as the nature of video self-supervised objectives that currently
generalize well.

4.2 Identifying Benchmark Sensitivity

The vast majority of current works in video self-supervised learning evaluate their
approach by pre-training on Kinetics-400 [ 1 13] and finetuning the learned representa-
tion for action recognition on UCF-101[209] and HMDB-51[122]. Some works [171,

, , , , 8, 68, , 94] also report performance on video retrieval for
UCF-101 and HMDB-51 and several recent works [ 182, , ] compare linear
evaluation performance on Kinetics-400. However, these downstream datasets are very
similar to each other and also share many similarities with the pre-training dataset
of Kinetics-400. Videos in all three datasets are collected from YouTube and are
mostly recorded with a single camera containing a single well-positioned human actor.
In terms of class labels, all datasets focus on similar, coarse-grained and mutually
exclusive actions with many actions common between pre-training and downstream
datasets. Besides all these data similarities, the existing evaluations also ignore a
major benefit of self-supervised representation learning for videos, i.e. finetuning the
representation with only a small amount of data samples and transferring to other
video understanding tasks beyond action recognition. Hence, we believe the current
benchmark standard is insufficiently equipped to gain a true understanding of where
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Pre-training

1. Downstream domains
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IV. Downstream tasks

. m. WsEE A
111 B B

Action recognition Action detection ~ Repetition counting

Kinetics-400

FIGURE 4.1: Benchmark-sensitivity. We evaluate the sensitivity of 9 video self-
supervised learning methods along 4 downstream factors which vary from the pre-training
source: the domain, the samples, the actions and the task.

video self-supervised models are successful, as it cannot show the generalizability
or the sensitivity of methods to factors such as domain shift, amount of finetuning
data samples, action similarity or task shift. In this study, we identify the sensitivity
of existing evaluations and thoroughly benchmark self-supervised video learning
methods along four sensitivity factors as depicted in Figure 4.1.

I. Downstream domain. First, we analyze whether features learned by self-
supervised models transfer to datasets that vary in domain with respect to the
pre-training dataset.

II. Downstream samples. Second, we evaluate the sensitivity of self-supervised
methods to the number of downstream samples available for finetuning.

ITII. Downstream actions. Third, we investigate if self-supervised methods learn
fine-grained features required to recognize semantically similar actions.

IV. Downstream task. Finally, we study the sensitivity of video self-supervised
methods to the downstream task and question whether self-supervised features
can be used beyond action recognition.

4.2.1 Downstream Video Datasets

We evaluate various self-supervised models along our four sensitivity factors on
7 video datasets: UCF-101 [209], NTU-60 [195], SomethingSomething-v2 (SS-
v2) [74], FineGym (Gym-99) [197], EPIC-Kitchens-100 (EK-100) [39], Cha-
rades [202] and AVA [77]. They include a considerable variety in video domain, the
actions they contain and cover a range of video understanding tasks. To get a sense
of the differences between these downstream datasets and the Kinetics-400 source
dataset, we summarize their similarity to Kinetics-400 by radar plots in Figure 4.2
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FIGURE 4.2: Video dataset characteristics. Characterizing domain shift in datasets
via difference in label overlap, point-of-view (PoV), environment, action length and
temporal awareness with Kinetics-400 (shown by dotted line). Kinetics-400 and UCF-101
are highly similar to each other, while datasets like Something-Something-v2, EPIC-
Kitchens-100 and Charades have different attributes compared to Kinetics-400.

based on several attributes. Environment refers to the variety of settings contained
in the dataset. Point-of-view is whether a video is recorded from a first-person or
third-person viewpoint. Temporal awareness defines the extent to which temporal con-
text is required to recognize or detect actions. We quantify this as the point at which
performance saturates with increasing temporal context in the input. Label overlap is
the fraction of actions in a target dataset that are also present in Kinetics-400. Action
length is the temporal length of the actions in seconds. Details are provided in the
Appendix B.

4.2.2 Evaluated Self-Supervised Video Learning Methods

Self-supervised learning methods in video can be grouped into two categories based on
the objective they use: pretext task methods and contrastive learning methods. Pretext
task methods use predictive tasks such as solving spatio-temporal jigsaw puzzles [2,
, ], rotation prediction [106], frame and clip order [ 157, 64, , , ], video
speed [15, 33, , ], video completion [147], predicting motion statistics [241],
tracking random patches in video frames [237] or audio-visual clustering [26, 92, 8, 5].
Contrastive learning methods discriminate between ‘positive’ and ‘negative’ pairs to
learn invariances to certain data augmentations and instances either from visual-only
input [169, 41, 81, , , , 44, ] or multi-modal data [171, , 80, ,
, 119, 221].
Some methods also combine pretext and contrastive approaches [217, , ,
, 44, 94]. A detailed survey of video self-supervised learning methods can be found
in [193]. We consider 9 video-based self-supervised methods which achieve good
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performance on current benchmarks and cover a range of self-supervised paradigms
in the video domain, including contrastive learning, pretext-tasks, their combination
and cross-modal audio-video learning.

Due to the high computational cost of training self-supervised methods, we focus
on works with publicly available weights for a common R(2+1)D-18 network [229]
pre-trained on Kinetics-400 [113]: MoCo [30], SeLaVi [¢], VideoMoCo [169],
Pretext-Contrast [217], RSPNet [173], AVID-CMA [158], CtP [237], TCLR [41]
and GDT [171]. We compare these to no pre-training, i.e. training from scratch, and
fully supervised pre-training for action recognition. It is worth noting that since we
use publicly available models we cannot control the exact pre-training setup. There
are subtle differences in the training regime for each method, such as the number of
epochs, the data augmentations used and the batch size. Details of these differences
are provided in the Appendix B. However, all models use the same backbone and
pre-training dataset thus we can evaluate their downstream abilities in exactly the same
way. To finetune for downstream tasks we simply attach a task-dependent head at the
last layer of the pre-trained R(2+1)D-18 backbone to produce label predictions for the
corresponding task. For a fair comparison, we use the same set of hyper-parameters,
optimization and pre-processing during the downstream training of each model.

4.3 Sensitivity Factor I: Downstream Domain

We first investigate to what extent self-supervised methods learn features that are
applicable to action recognition in any domain. We evaluate the suite of pre-trained
models on UCF-101, NTU-60, Gym-99, SS-v2 and EK-100 for the task of action
recognition. It is worth noting that as well as variety in domain, these datasets include
variety in the amount of training data (9.5k - 168k examples) and cardinality of
classification (60 - 300 classes). We attach a single classification layer to the pre-
trained backbone and evaluate the models’ performance on the downstream task
in two settings. First, full finetuning where we train the whole network from the
initialization of the pre-trained weights. Second, linear evaluation where we train
the classification layer only using the frozen features of pre-trained backbones. We
follow the standard splits proposed in the original datasets and report video-level top-1
accuracy on the test sets. The details about splits, pre-processing, training for each
dataset are provided in the Appendix B.

Full finetuning. The left part of Table 4.1 shows the results of full finetuning. From
the results, it is clear that all self-supervised methods are very effective on UCF-101
as there is a significant gap between training from scratch and using self-supervised
pre-training. This gap is reduced as the difference between Kinetics-400 and the down-
stream domain increases. SeL.aVi, MoCo and AVID-CMA in particular are evidence
of this as these methods suffer when datasets have higher temporal awareness and
less label overlap with Kinetics-400. When moving from UCF-101 to NTU-60 and
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. . Finetuning Linear Evaluation
Pre-training
UCF101 NTU60 Gym99 SSv2 EK 100 K400 UCF101 NTU60 Gym99 SSv2 EK 100

None 77.3 92.9 89.8 571 257 - - - - - -
MoCo 83.3 93.4 90.7 571 264 345 65.4 16.0 21.2 74 214
VideoMoCo 84.9 94.1 90.3 59.0 436 31.0 66.3 51.6 416 195 257
SeLaVi 85.2 92.8 889 562 338 24.1 51.2 15.7 20.2 4.5 224
Pretext-Contrast ~ 87.7 93.9 90.5 569 343 224 57.2 17.6 30.0 109 | 20.0
RSPNet 88.7 93.9 91.1  59.0 427 46.0 76.6 33.5 322 125 249
AVID-CMA 88.8 94.0 904 520 299 43.5 78.1 53.9 451 161 225
CtP 90.1 94.3 920 59.6 428 7.6 37.9 22.6 306 122 @ 20.0
TCLR 90.8 94.1 916 598 362 19.9 63.3 33.5 330 108 218
GDT 91.3 93.9 90.5 580 373 38.6 75.7 38.2 342 119 253
Supervised 93.9 93.9 921 608 477 65.9 91.7 45.5 427 16.6  26.6

TABLE 4.1: Sensitivity Factor I: Downstream Domain. Video self-supervised methods

evaluated across datasets with increasing domain shift with respect to the source dataset

(see Figure 4.2). Colors denote relative rankings across methods for each dataset, rang-

ing from . The ranking of methods is domain-sensitive for both

finetuning and linear classification and becomes less and less correlated with the current
UCF-101 benchmark as the domain shift increases.

Gym-99 there is a change in the ordering of self-supervised methods. This demon-
strates a high performance on UCF-101 does not guarantee a self-supervised model
is generalizable to other domains. The change in ranking is even more prominent
for SS-v2 and EK-100, which require the most temporal awareness and also shift to
a first-person viewpoint. This is particularly noticeable for AVID-CMA. On these
datasets, MoCo has similar results to no pre-training, which is evidence that video-
specific self-supervised learning methods are needed and that image-based methods
are insufficient. Overall, supervised pre-training achieves good performance across the
board, outperforming self-supervised methods on the most similar domain (UCF-101)
as well as the most dissimilar domains (SS-v2 and EK-100). Amidst the models tested,
CtP, RSPNet, VideoMoCo and TCLR stand out as the self-supervised pre-training
methods most generalizable to different domains.

Linear classification. The right part of Table 4.1 shows the results for linear classifi-
cation. As with finetuning, the ranking among the self-supervised methods changes as
the domain difference between the pre-training and the downstream dataset increases.
For example, VideoMoCo ranks lower than GDT and RSPNet for UCF-101 and
Kinetics-400 but ranks higher than both for all other datasets. This again demonstrates
that performance on UCF-101 does not give a complete picture of a self-supervised
model’s success. We also observe that linear evaluation on Kinetics-400, as some pa-
pers report [ 182, 189, 262], has the same issue since it is highly correlated to UCF-101
performance. For UCF-101 and Kinetics-400, self-supervised models with contrastive
objectives learn highly discriminative features compared to the non-contrastive mod-
els. This can be seen by comparing contrastive models AVID-CMA, GDT and RSPNet
to non-contrastive SeLLaVi and CtP. From the NTU-60 and Gym-99 results we ob-
serve that as the label overlap between the pre-training and the downstream dataset
decreases, the performance gap between finetuning and linear evaluation increases
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considerably. This is true for both supervised and self-supervised pre-training. The
most generalizable methods in the linear classification setting are contrastive meth-
ods VideoMoCo and AVID-CMA as well as supervised pre-training. Interestingly,
there are cases where VideoMoCo and AVID-CMA even outperform supervised
pre-training, namely for NTU-60, Gym-99 and SS-v2.

Conclusion. We observe from Table 4.1 that performance for both UCF-101
finetuning and Kinetics-400 linear evaluation is not indicative of how well a
self-supervised video model generalizes to different downstream domains, with
the ranking of methods changing substantially across datasets and whether full
finetuning or linear classification is used.

4.4 Sensitivity Factor II: Downstream Samples

The previous section analyzed sensitivity to the downstream domain by evaluating per-
formance on several different datasets. However, finetuning on each of these datasets
uses a large number of labeled examples, which means training from scratch already
obtains good performance. Not all domains and use cases have ample labeled video
examples available, thus we investigate what the impact of the number of finetuning
samples is and whether self-supervised methods can be beneficial in scenarios where
we have little data to finetune with. We vary the amount of finetuning data, beginning
from 1000 videos, sampled uniformly from the classes, and double the amount until
we reach the full training set size. We report on four of the downstream datasets
from the previous section: UCF-101, NTU-60, Gym-99 and SS-v2. The results are
summarized in Figure 4.3.

We first observe that the trends in the low data regime are different from those
with the full data. The gap between supervised and self-supervised pre-training is
much larger in low data settings, particularly for UCF-101 and Gym-99. NTU is
an exception, where, with 1000-4000 samples CtP, GDT, AVID-CMA and TCLR
outperform supervised pre-training. As with changes in the downstream domain,
change in the amount of downstream examples also causes a change in the ranking of
self-supervised models. For example, on UCF-101, RSPNet is much more successful
than CtP and TCLR when using only 1000 samples. This is because some self-
supervised models benefit more than others from an increased amount of downstream
samples. For example, CtP is one of the most generalizable pre-training strategies
when finetuning with the full data on UCF-101, Gym-99 and SS-v2, but this is not
the case with fewer training samples. Interestingly, GDT is consistently high in the
ranking with low amounts of finetuning samples. This is likely due to the large number
of temporal augmentations it uses, which help the generalization ability when the
training data is limited.
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FIGURE 4.3: Sensitivity Factor II: Downstream Samples. Comparison of video self-

supervised learning methods using varying number of finetuning samples for four down-

stream datasets. Both the gap and rank among pre-training methods are sensitive to the
number of samples available for finetuning.

Conclusion. We observe from Figure 4.3 that video self-supervised models
are highly sensitive to the amount of samples available for finetuning, with
both the gap and rank between methods changing considerably across sample
sizes on each dataset.

4.5 Sensitivity Factor I1I: Downstream Actions

As indicated earlier, existing evaluations of self-supervised video learning methods
have been limited to coarse-grained action recognition. In this section, we investigate
whether current self-supervised tasks are only effective for these types of benchmarks
or whether they are able to learn features that are useful for differentiating more
challenging and semantically similar actions.

FineGym [197] provides us with an experimental setup to study sensitivity to
this factor. The dataset contains different evaluations with varying levels of semantic
similarity, namely action recognition across all events, within an event or within a
set. Recognition across all events uses the whole of Gym-99 containing actions from
four gymnastic events. For recognition within an event there are two subsets: Vault
and Floor containing only actions from these two events. Recognition within a set
has two subsets namely FX-S1, containing different leaps-jumps-hops in Floor, and
UB-S1, which consists of types of circles in Uneven Bars. We also experiment with
the long-tailed version of FineGym, Gym-288, which adds 189 more tail classes.
Details of these subsets are in the Appendix B. As before, we attach a classification
head to the pre-trained models and finetune the whole network with the training set of
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Gym99 Gym288
Pre-training Across Events Within Event Within Set Across Events
All Vault  Floor FX-S1 UB-S1 All
None 84.8 24.7 75.9 46.6 82.3 50.0
SeLaVi 84.5 254 76.0 51.3 80.9 52.8
AVID-CMA 85.7 30.4 82.7 68.0 87.3 52.5
VideoMoCo 85.9 28.4 79.5 57.3 83.9 54.1
Pretext-contrast 86.0 28.5 814 66.1 86.1 52.7
MoCo 86.5 33.2 83.3 65.0 84.5 55.1
GDT 86.6 36.9 83.6 66.0 83.4 55.4
RSPNet 86.9 33.4 82.7 65.4 83.6 55.2
TCLR 87.7 29.8 84.3 60.7 84.7 55.4
CtP 88.1 26.8 86.2 79.1 88.8 56.5
Supervised 88.6 37.7 86.1 79.0 87.1 58.4

TABLE 4.2: Sensitivity Factor III: Downstream Actions. Video self-supervised models

evaluated on different semantic similarities of action in FineGym: across events, within

an event and within a set. Colors denote relative rankings across methods for each

dataset, ranging from . Many methods struggle on the within a set
benchmark where actions are most semantically similar.

each subset. In Table 4.2 we report Top-1 accuracy (mean per-class) on the testing
sets following [197].

Performance of self-supervised methods varies considerably across downstream
actions. The methods that perform best on Gym-99 often do not generalize well to the
subsets with higher semantic similarity among actions. This is particularly noticeable
for RSPNet and TCLR which drop in the ranking for the within-set subsets. All self-
supervised methods, except GDT, struggle on Vault, likely due to the intense motions.
Surprisingly, MoCo performs reasonably well when actions are more semantically
similar, and is comparable to GDT and RSPNet. The best self-supervised method for
subsets with high semantic similarity is CtP. This is especially evident from FX-S1
where it outperforms the second-best self-supervised method, AVID-CMA, by 12%.
As with downstream domain and samples, supervised pre-training generalizes better
than self-supervised methods across downstream actions with only CtP achieving
comparable performance.

Table 4.2 also compares balanced Gym-99 with long-tailed Gym-288. We observe
that self-supervised methods are not robust to this change in distribution, with the
gap in performance with respect to supervised pre-training increasing. However, the
ranking remains consistent, meaning the performance on the balanced set is generally
indicative of the performance on the long-tailed set.

Conclusion. Most self-supervised methods in Table 4.2 are sensitive to the
actions present in the downstream dataset and do not generalize well to more
semantically similar actions. This further emphasizes the need for proper
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evaluation of self-supervised methods beyond current coarse-grained action
classification.

4.6 Sensitivity Factor IV: Downstream Tasks

The fourth factor we investigate is whether self-supervised video models are sensitive
to the downstream task or whether features learned by self-supervised models are
useful to video understanding tasks beyond action recognition. We evaluate this in two
ways. First, we keep the domain fixed and evaluate different tasks in a domain similar
to the pre-training dataset. We also explore further tasks by changing the domain and
seeing how these two factors interplay.

4.6.1 Task-shift within domain.

We consider three different tasks which are all defined for UCF-101: spatio-temporal
action detection [ ! 18], repetition counting [277] and arrow-of-time prediction [71].
Using UCF-101 allows us to keep the domain fixed across tasks and eliminates the
impact of domain shift. Note that each task uses a different subset of the full UCF-101
dataset, however, the domain remains consistent. For each task, we use the R(2+1)D-
18 networks as the pre-trained backbones as before and attach task-dependent heads.
We report mean Average Precision for spatio-temporal localization [153], mean
absolute counting error for repetition counting [277] and classification accuracy for
arrow-of-time prediction [71, ]. Further details are in the Appendix B.

From the results in Table 4.3, we observe that self-supervised learning is beneficial
to tasks beyond action recognition, with almost all methods outperforming training
from scratch on spatio-temporal action detection, repetition counting and arrow-of-
time prediction. Action detection results are well correlated with action recognition.
Repetition counting and arrow-of-time have less correlation with action recognition,
suggesting that the current benchmark on UCF-101 action recognition by itself is not
a good indication of how well self-supervised methods generalize to other tasks. For
repetition counting and arrow-of-time prediction, some methods perform comparably
to or outperform supervised pre-training. Notably, RSPNet and TCLR generalize the
best across these tasks, with GDT also performing well on repetition counting. CtP
ranks high on action recognition and detection but performs modestly for repetition
counting. This shows that different methods have different task sensitivity, so a
thorough evaluation along downstream tasks is needed.

4.6.2 Task-shift out of domain.

We also evaluate how well the self-supervised models generalize when both the domain
and the task change. We do so with two popular video understanding benchmarks:
long-term multi-label classification on Charades [202] and short-term spatio-temporal
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Task-shift within domain Task-shift out of domain
Pre-training Action Action Repetition ~ Arrow of Multi-label Action
Recognition  Detection  Counting Time Recognition  Detection
None 77.3 0.327 0.217 56.1 7.9 74
MoCo 83.3 0.416 0.208 80.3 8.3 11.7
VideoMoCo 84.9 0.440 0.185 72.9 10.5 13.1
SeLaVi 85.2 0.419 0.162 77 4 8.4 10.2
Pretext-contrast 87.7 0.462 0.164 77.2 8.9 12.7
RSPNet 88.7 0.467 0.145 87.0 9.0 14.1
AVID-CMA 88.8 0.435 0.148 83.3 8.2 10.0
CtP 90.1 0.465 0.178 77.1 9.6 10.0
TCLR 90.8 0.476 0.142 85.6 12.2 10.8
GDT 91.3 0.463 0.123 76.4 8.5 12.6
Supervised 93.9 0.482 0.132 77.0 23.5 17.9

TABLE 4.3: Sensitivity Factor I'V: Downstream Tasks. Transferability of self-supervised
video learning methods across video understanding tasks. Colors denote relative rankings
across methods for each task, ranging from . Note that for repetition
counting lower (error) is better. Self-supervised features are transferable to different
downstream tasks when the domain shift is low, but struggle when there is also a domain
shift. Action recognition on UCF-101 is not a good proxy for self-supervised video
learning use cases where a downstream domain- and task-shift can be expected.

action detection on AVA [77]. For both, we follow the setup and training procedure
from [62] with R(2+1)D-18 models as the pre-trained backbone and we measure
performance in mean Average Precision. Details are in the Appendix B.

From the results in Table 4.3, we observe that supervised pre-training is far more
generalizable than all self supervised methods, which all struggle considerably when
both the domain and task change. For long-term action classification on Charades,
TCLR is slightly better than other methods. On AVA, RSPNet is the best performing
self-supervised method with VideoMoCo second. In Section 4.3, we earlier observed
that these were two of the methods more robust to domain shift suggesting that this
factor is key to success on AVA.

Conclusion. The results in Table 4.3 reveal that action classification perfor-
mance on UCF-101 is mildly indicative for transferability of self-supervised
features to other tasks on UCF-101. However, when methods pre-trained on
Kinetics-400 are confronted with a domain change in addition to the task
change, UCF-101 results are no longer a good proxy and the gap between
supervised and self-supervised pre-training is large.

4.7 SEVERE-benchmark

As evident from the results in previous sections, current video self-supervised methods
are benchmark-sensitive to the four factors we have studied. Based on our findings,
we propose the SEVERE-benchmark (SEnsitivity of VidEo REpresentations) for use
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in future works to more thoroughly evaluate new video self-supervised methods for
generalization along the four sensitivity factors we have examined. Since we do not
expect future works to run all the experiments from our study, we create a subset of
experiments that are indicative benchmarks for each sensitivity factor and realistic to
run. We summarize the benchmark composition in Table 4.4 and detail its motivation
per factor. Standard deviations for the results we obtain on this benchmark can be
found in the Appendix B.

Downstream domain. To measure a self-supervised model’s domain sensitivity we
recommend using Something-Something-v2 and FineGym-99. These two datasets
come from domains distinct to Kinetics-400 and UCF-101 and also each other.
FineGym-99 evaluates a model’s ability to generalize to datasets with less distinctive
backgrounds where there are few actions in common with Kinetics-400. SS-v2 evalu-
ates the generalizability to actions that require high temporal awareness as well as the
shift to a first-person viewpoint. It is evident from Table 4.4 that there are significant
rank changes between UCF-101, Gym-99 and SS-v2 thus these three datasets provide
a challenging subset for future methods.

Downstream samples. For the sample sensitivity, we recommend using 1000 samples
on UCF-101 and Gym-99. Using 1000 samples showed the most dramatic difference
from the full dataset size particularly for these datasets where there is a considerable
gap between self-supervised and supervised pre-training as well as considerable rank
change among the methods.

Downstream actions. To test generalizability to recognizing semantically similar
actions, we recommend evaluating the two within-set granularities of Gym-99 i.e.
FX-S1 and UB-S1. Both of these subsets have high semantic similarity between
actions with methods currently struggling to generalize to both of these subsets as
can be seen in Table 4.4. There is also a significant gap between supervised and most
self-supervised pre-training methods for FX-S1, highlighting the potential for future
works in this area.

Downstream task. To evaluate the task sensitivity, we recommend using repeti-
tion counting on UCF-101 and multi-label classification on Charades. Repetition
counting on UCF-101 highlights different strengths to action recognition as it al-
lows investigation of a model’s ability to generalize to a task that requires more
temporal understanding without measuring the impact of the domain. We recom-
mend multi-label classification on Charades as it is currently a very challenging
task for self-supervised models and allows the combination of domain and task
shift to be investigated. Code to compare on the SEVERE-benchmark is available at
https://github.com/fmthoker/SEVERE-BENCHMARK.

4.8 Observations, Limitations and Recommendations

Observations. We hope that our study and resulting benchmark provides a helpful
insight for future research to design novel self-supervised methods for generalizable
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Existing SEVERE-benchmark
Pre-training Domains Samples Actions Tasks

UCF101  SS-v2 Gym-99 UCF (10%) Gym-99 (10%) FX-S1 UB-S1 UCE-RC Charades-MLC
None 773 571 | 898 383 227 466 823 0.217 7.9
MoCo 83.3 571 907 60.4 30.9 65.0 845 0.208 8.3
VideoMoCo 84.9 59.0 903 65.4 20.6 573 839 0.185 10.5
SeLaVi 85.2 56.2 | 889 69.0 30.2 51.3 809 0.162 8.4
Pretext-Contrast ~ 87.7 56.9 905 64.6 27.5 66.1  86.1 0.164 8.9
RSPNet 88.7 59.0  91.1 74.7 32.2 654  83.6 0.145 9.0
AVID-CMA 88.8 520 904 68.2 33.4 68.0 873 0.148 8.2
CtP 90.1 59.6 920 61.0 32.9 790 888  0.178 9.6
TCLR 90.8 59.8 916 72.6 26.3 60.7 847 0.142 12.2
GDT 91.3 580 905 78.4 45.6 66.0  83.4 0.123 8.5
Supervised 93.9 60.8  92.1 86.6 51.3 790 87.1 0.132 23.5
TABLE 4.4: Proposed SEVERE-benchmark for evaluating video self-supervised meth-

video
that:

®

(ii)

(iii)

(iv)

)

ods for generalization along downstream domains, samples, actions and tasks.

representation learning. From the benchmark results in Table 4.4, we observe

There is no clear winner as different methods stand out in different downstream
settings.

Supervised pre-training is dominant across all sensitivity factors, especially
when the number of available downstream samples are limited and when there
is a change in both the downstream domain and the downstream task.

Self-supervised contrastive methods that explicitly encourage features to be
distinct across the temporal dimension transfer well. This is visible from the
consistent performance of GDT, TCLR and RSPNet across different sensitivity
factors.

Learning certain temporal invariances may prevent generalizability to temporal
or fine-grained benchmarks. This is evident from GDT’s performance on SS-v2
and UB-S1. These benchmarks require distinction between actions such as
moving something left vs. moving something right in SS-v2 and giant circle for-
wards vs. giant circle backwards in UB-S1. The invariance to temporal reversal
learned by GDT impacts its ability to recognize such actions. Similarly, MoCo
outperforming VideoMoCo on the FX-S1 and UB-S1 Gym-99 subsets suggests
that invariance to frame dropout in VideMoCo can harm the performance on
highly similar actions.

Pretext-tasks specific to videos can be effective to learn more fine-grained
features. CtP generalizes well both to different domains where the background
is less indicative of the action and to more semantically similar actions. The
pretext task is to track and estimate the position and size of image patches
moving in a sequence of video frames. Such a formulation requires the network
to learn to follow moving targets and ignore the static background information.
CtP’s generalization success demonstrates that contrastive learning is not the
only way forward for self-supervised video representation learning.
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FIGURE 4.4: Representation similarity between features of top self-supervised methods
and supervised pre-training on Kinetics-400 validation set (using centered kernel align-
ment [162]). Contrastive methods have a high correlation with supervised pretraining,
while CtP’s features are far away. Thus, showing potential for both imitating supervised
learning as well as learning features distinct to it.

(vi) Figure 4.4 shows the feature similarity on Kinetics using centered kernel align-
ment [162] between supervised pre-training and the best self-supervised meth-
ods i.e. GDT, RSPNet, TCLR, CtP. This figure illustrates that contrastive meth-
ods seem to imitate supervised pre-training as the correlation between super-
vised pre-training and the three contrastive methods (RSPNet, GDT and TCLR)
is high. This explains the good performance of these methods on UCF-101
with 1000 examples. By contrast, CtP’s features are far away from supervised
pre-training. This is interesting because CtP generalizes well to new domains
and actions, it shows that good generalization capability can be obtained without
imitating supervised pre-training.

Limitations. While our study has highlighted the benchmark sensitivity of video
self-supervised learning across four factors, there are many more factors that we do
not consider in this chapter. Due to computational limits, we keep the source dataset
fixed as Kinetics-400 and use publicly available pre-trained models. This means there
is variability in the exact pre-training setup such as the spatial data augmentations
that are used by each model. We hope that future works will explore impact of such
pretraining factors as well as the impact of pre-training on other large-scale datasets
such as Ego4D [75] for the generalization of video self-supervised models. Another
limitation of our study is that we only consider a fixed R(2+1)D-18 backbone, which
is currently one of the most commonly used in video self-supervised learning. This
allows our comparison between methods to be fair, however, it does limit the ability
of methods to perform well on datasets such as EPIC-Kitchens-100. Another factor
that could be explored further is the task. We have considered a selection of various
video understanding tasks centered around human actions. However, there are many
more video understanding tasks that could be explored such as human centric tasks
like action anticipation [39] and temporal action detection[39], as well as non-human
centric tasks like animal behavior analysis [55, 161, 214], multi-object tracking [172]
and visual grounding [214].

Recommendations. Based on the results and our observations, we have several
recommendations for future works in video self-supervised learning. (i) Our study has
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highlighted the need for more focus on generalizability of self-supervised learning
methods, particularly along the domain and dataset size factors. (i1) Distinguishing
across the temporal dimension is effective and is a useful direction to pursue further
for generalizability. (iii) Pretext-tasks like the one used in CtP are good for the
generalizability to domain and action, thus designing new video specific pretext tasks
is a promising direction. This could also be combined with contrastive learning tasks
to gain the benefits of both types of learning.






61

Chapter 5

Tubelet-Contrastive Self-Supervision
for Video-Efficient Generalization

5.1 Introduction

This chapter aims to learn self-supervised video representations, useful for distinguish-
ing actions. In a community effort to reduce the manual, expensive, and hard-to-scale
annotations needed for many downstream deployment settings, the topic has wit-
nessed tremendous progress in recent years [64, , , ], particularly through
contrastive learning [181, , , 60]. Contrastive approaches learn representa-
tions through instance discrimination [!67], by increasing feature similarity between
spatially and temporally augmented clips from the same video. Despite temporal
differences, such positive video pairs often maintain high spatial similarity (see Fig-
ure 5.1), allowing the contrastive task to be solved by coarse-grained features without
explicitly capturing local motion dynamics. This limits the generalizability of the
learned video representations, as shown in our prior work [224]. Furthermore, prior
approaches are constrained by the amount and types of motions present in the pre-
training data. This makes them data-hungry, as video data has high redundancy with
periods of little to no motion. In this chapter, we address the need for data-efficient
and generalizable self-supervised video representations by proposing a contrastive
method to learn local motion dynamics.

We take inspiration from action detection, where tubelets are used to represent the
motions of people and objects in videos through bounding box sequences e.g.,[ 1 00,

, ]. Typically, many tubelet proposals are generated for a video, which are
processed to find the best prediction. Rather than finding tubelets in video data,
we simulate them. In particular, we sample an image patch and ‘paste’ it with a
randomized motion onto two different video clips as a shared tubelet (see Figure 5.1).
These two clips form a positive pair for contrastive learning where the model has to
rely on the spatiotemporal dynamics of the tubelet to learn the similarity. With such a
formulation, we can simulate a large variety of motion patterns that are not present
in the original videos. This allows our model to be data-efficient while improving
generalization to new domains and fine-grained actions.

We make four contributions. First, we explicitly learn from local motion dynamics
in the form of synthetic tubelets and design a simple but effective tubelet-contrastive
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Existing Temporal Contrastive Learning

FIGURE 5.1: Tubelet-Contrastive Positive Pairs (bottom) only share the spatiotemporal

motion dynamics inside the simulated tubelets, while temporal contrastive pairs (top)

suffer from a high spatial bias. Contrasting tubelets results in a data-efficient and general-
izable video representation.

framework. Second, we propose different ways of simulating tubelet motion and
transformations to generate a variety of motion patterns for learning. Third, we reveal
the remarkable data efficiency of our proposal: on five action recognition datasets our
approach maintains performance when using only 25% of the pretraining videos. What
is more, with only 5-10% of the videos we still outperform the vanilla contrastive
baseline with 100% pretraining data for several datasets. Fourth, our comparative
experiments on 10 downstream settings, including UCF101 [209], HMDBS1 [122],
Something Something [74], and FineGym [197], further demonstrate our compet-
itive performance, generalizability to new domains, and suitability of our learned
representation for fine-grained actions.
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5.2 Related Work

Self-Supervised Video Representation Learning. The success of contrastive learn-
ing in images [85, 29, 76, ] inspired many video contrastive works [ 181, , ,
, , ]. Alongside spatial invariances, these works learn invariances to temporal
crops [ 169, , ] and video speed [ 173, 94, ]. Some diverge from temporal
invariances and encourage equivariance [171, 41] to learn finer temporal representa-
tions. For instance, TCLR [4 1] enforces within-instance temporal feature variation,
while TE [101] learns equivariance to temporal crops and speed with contrastive
learning. Alternatively, many works learn to predict temporal transformations such as
clip order [64, , ], speed [15, 33, ] and their combinations [ 147, ]. These
self-supervised temporal representations are effective for classifying and retrieving
coarse-grained actions but are challenged by downstream settings with subtle motions
[224, ]. Other works utilize the multimodal nature of videos [4, &, , , 80,
, ] and learn similarity with audio [8, 4, ] and optical flow [80, 69, , ].
We contrast motions of synthetic tubelets to learn a video representation from only
RGB data that can generalize to tasks requiring fine-grained motion understanding.
Other self-supervised works learn from the spatiotemporal dynamics of video.
Both BE [244] and FAME [45] remove background bias by adding static frames [244]
or replacing the background [45] in positive pairs. Several works instead use masked
autoencoding to learn video representations [ , 61, ]. However, these works
are all limited to the motions present in the pretraining dataset. We prefer to be less
dataset-dependent and generate synthetic motion tubelets for contrastive learning,
which also offers a considerable data-efficiency benefit. CtP [237] and MoSI [96]
both aim to predict motions in pretraining. CtP [237] learns to track image patches
in video clips while MoSI [96] learns to predict the speed and direction of added
pseudo-motions. We take inspiration from these works and contrast synthetic motions
from tubelets which allows us to learn generalizable and data-efficient representations.
Supervised Fine-Grained Motion Learning. While self-supervised works have
mainly focused on learning representations to distinguish coarse-grained actions, much
progress has been made in supervised learning of motions. Approaches distinguish
actions by motion-focused neural network blocks [ , , , ], decoupling
motion from appearance [131, ], aggregating multiple temporal scales [261, ,
], and sparse coding to obtain a mid-level motion representation [ 152, , ].
Other works exploit skeleton data [52, 90] or optical flow [203, 58]. Alternatively,
several works identify motion differences within an action class, by repetition count-
ing [93, , ], recognizing adverbs [50, 49] or querying for action attributes [275].
Different from all these works, we learn a motion-sensitive video representation with
self-supervision. We do so by relying on just coarse-grained video data in pretraining
and demonstrate downstream generalization to fine-grained actions.
Tubelets. Jain et al. defined tubelets as class-agnostic sequences of bounding boxes
over time [ 100]. Tubelets can represent the movement of people and objects and are
commonly used for object detection in videos[ 08, , 59], spatiotemporal action
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FIGURE 5.2: Tubelet-Contrastive Learning. We sample two clips (v1, vp) from different
videos and randomly crop an image patch from v;. We generate a tubelet by replicating
the patch in time and add motion through a sequence of target locations for the patch.
We then add complexity to these motions by applying transformations, such as rotation,
to the tubelet. The tubelet is overlaid © onto both clips to form a positive tubelet pair
(01, 02). We learn similarities between clips with the same tubelets (positive pairs) and
dissimilarities between clips with different tubelets (negatives) using a contrastive loss.

localization [ 107, , , , 91, ] and video relation detection [28]. Initially,
tubelets were obtained by supervoxel groupings and dense trajectories [ 100, 70] and
later from 2D CNNs [107, ], 3D CNNs [91, ] and transformers [284]. We

introduce (synthetic) tubelets of pseudo-objects for contrastive video self-supervised
learning.

5.3 Tubelet Contrast

We aim to learn motion-focused video representations from RGB video data with
self-supervision. After revisiting temporal contrastive learning, we propose tubelet-
contrastive learning to reduce the spatial focus of video representations and instead
learn similarities between spatiotemporal tubelet dynamics (Section 5.3.2). We encour-
age our representation to be motion-focused by simulating a variety of tubelet motions
(Section 5.3.3). To further improve data efficiency and generalizability, we add com-
plexity and variety to the motions through tubelet transformations (Section 5.3.4).
Figure 5.2 shows an overview of our approach.

5.3.1 Temporal Contrastive Learning.

Temporal contrastive learning learns feature representations via instance discrimina-
tion [167]. This is achieved by maximizing the similarity between augmented clips
from the same video (positive pairs) and minimizing the similarity between clips from
different videos (negatives). Concretely given a set of videos V, the positive pairs
(v,v") are obtained by sampling different temporal crops of the same video [169,

] and applying spatial augmentations such as cropping and color jittering. Clips
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sampled from other videos in the training set act as negatives. The extracted clips
are passed through a video encoder and projected on a representation space by a
non-linear projection head to obtain clip embeddings (Z,, Z,/). The noise contrastive
estimation loss InfoNCE [167] is used for the optimization:

h(Z’(), Z'U/)

(ZU/ZU/)+ Z h(ZU/ZTl)
Zu~N

Lcontrast (0, U/) = —log h (5.1)

where h(Z,, Zy)=exp(Zy - Zy /T), T is the temperature parameter and N is a set
of negative clip embeddings.

5.3.2 Tubelet-Contrastive Learning

Different from existing video contrastive self-supervised methods, we explicitly aim
to learn motion-focused video representations while relying only on RGB data. To
achieve this we propose to learn similarities between simulated tubelets. Concretely,
we first generate tubelets in the form of moving patches which are then overlaid onto
two different video clips to generate positive pairs that have a high motion similarity
and a low spatial similarity. Such positive pairs are then employed to learn video
representations via instance discrimination, allowing us to learn more generalizable
and motion-sensitive video representations.

Tubelet Generation. We define a tubelet as a sequence of object locations in each
frame of a video clip. Let’s assume an object p of size H' X W' moving in a video
clip v of length T. Then the tubelet is defined as follows:

Tubelet, = [(x!,y'),.., (xT,y7)], (5.2)

where (x',y') is the center coordinate of the object p in frame i of clip v. For this
work, a random image patch of size H' x W’ acts as a pseudo-object overlaid on a
video clip to form a tubelet. To generate the tubelet we first make the object appear
static, i.e., x1=x2=...=xT and y1 :y2 = ...:yT, and explain how we add motion in
Section 5.3.3.

Tubelet-Contrastive Pairs. To create contrastive tubelet pairs, we first randomly
sample clips v1 and v, of size HxW and length T from two different videos in V.
From v; we randomly crop an image patch p of size H' x W’. such that H' < H
and W < W. From the patch p, we construct a tubelet Tubelet, as in Equation 5.2.
Then, we overlay the generated tubelet Tubelet,, onto both v; and v; to create two
modified video clips 91 and 05:

01 = v1 © Tubelet,, 02 = vy © Tubelety, (5.3)

where © refers to pasting patch p in each video frame at locations determined by
Tubeletp. Equation 5.3 can be extended for a set of M tubelets {Tubele’cp1 S eey Tubeletp M}
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from M patches randomly cropped from v as:
01 = v1 © {Tubelet,, ..., Tubelet,,, }
0y = vy © {Tubelet,, ..., Tubelet,,, }. (5.4)

As a result, 91 and ¥, share the spatiotemporal dynamics of the moving patches
in the form of tubelets and have low spatial bias since the two clips come from
different videos. Finally, we adapt the contrastive loss from Equation 5.1 and apply
Lcontrast (01, 02). Here the set of negatives N contains videos with different tubelets.
Since the only similarity in positive pairs is the tubelets, the network must rely on
temporal cues causing a motion-focused video representation.

5.3.3 Tubelet Motion

To learn motion-focused video representations, we need to give our tubelets motion
variety. Here, we discuss how to simulate motions by generating different patch
movements in the tubelets. Recall, Equation 5.2 defines a tubelet by image patch
p and its center coordinate in each video frame. We consider two types of tubelet
motion: linear and non-linear.

Linear Motion. We randomly sample the center locations for the patch in K keyframes:
the first frame (i=1), the last frame (i=T), and K—2 randomly selected frames. These
patch locations are sampled from uniform distributions x € [0, W] and y € [0, H],
where W and H are the video width and height. Patch locations for the remaining
frames i ¢ K are then linearly interpolated between keyframes so we obtain the
following linear motion definition:

Tubelet™™ = [(x, 1), (x2,42), ..., (xT,yT)], s.t. (5.5)
(xi i) _ (Z/{(O,W),Z/{(O,H)), ifi € K
"0 Interp (2, yF), (%1, ykt1)),  otherwise

where U is a function for uniform sampling, k and k+1 are the neighboring keyframes
to frame i and Interp gives a linear interpolation between keyframes. To ensure
smoothness, we constrain the difference between the center locations in neighboring
keyframes to be less than A pixels. This formulation results in tubelet motions where
patches follow linear paths across the video frames. The left of Figure 5.3 shows
examples of such linear tubelet motions.

Non-Linear Motion. Linear motions are simple and limit the variety of motion
patterns that can be generated. Next, we simulate motions where patches move along
more complex non-linear paths, to better emulate motions in real videos. We create
non-linear motions by first sampling N 2D coordinates (N > T) uniformly from
x € [0,W]andy € [0, H|. Then, we apply a 1D Gaussian filter along x and y axes
to generate a random smooth nonlinear path as:

Tubelet™ """ =[(¢(x"), g(y")), ., ((x™), g(y™))]
st g(z) = e /2 (5.6)

\27o
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Non-Linear
Motion

Linear
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FIGURE 5.3: Tubelet Motion. Examples for Linear (left) and Non-Linear (right). Non-
linear motions enable the simulation of a larger variety of motion patterns to learn from.

where ¢ is the smoothing factor for the gaussian kernels. Note the importance of
sampling N > T points to ensure a non-linear path. If N is too small then the path
becomes linear after gaussian smoothing. We downsample the resulting non-linear
tubelet in Equation 5.6 from N to T coordinates resulting in the locations for patch p
in the T frames. The right of Figure 5.3 shows examples of non-linear tubelet motions.

5.3.4 Tubelet Transformation

The tubelet motions are simulated by changing the position of the patch across the
frames in a video clip, i.e. with translation. In reality, the motion of objects in space
may appear as other transformations in videos, for instance, scale decreasing as the
object moves away from the camera or motions due to planer rotations. Motivated
by this, we propose to add more complexity and variety to the simulated motions
by transforming the tubelets. In particular, we propose scale, rotation, and shear
transformations. As before, we sample keyframes K with the first (:=0) and last
frames (i=T) always included. Transformations for remaining frames are linearly
interpolated. Formally, we define a tubelet transformation as a sequence of spatial
transformations applied to the patch p in each frame i as:

Transy = [p, F(p,6?),....,..,E(p,07)], st
o U(Min,Max), ifieK (5.7)
| Interp (6%, 6K*1), otherwise
where F(p,6") applies the transformation to patch p according to parameters €',
U samples from a uniform distribution and 6% and 6X*1 are the parameters for the
keyframes neighboring frame i. For the first keyframe, no transformation is applied

thus representing the initial state of the patch p. We instantiate three types of such
tubelet transformations: scale, rotation, and shear. Examples are shown in Figure 5.4.
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FIGURE 5.4: Tubelet Transformation. Examples for Scale (left), Rotation (middle), and
Shear (right). The patch is transformed as it moves through the tubelet.

Scale. We scale the patch across time with F(p,8') and horizontal and vertical scaling
factors 6'=(w’, h'). To sample w' and K, we use Min=0.5 and Max=1.5.
Rotation. In this transformation F(p, Gi) applies in-plane rotations to tubelet patches.
Thus, €' is a rotation angle sampled from Min=—90° and Max=+90°.
Shear. We shear the patch as the tubelet progresses with F(p, Oi). The shearing
parameters are 6= (ri, si) which are sampled using Min=—1.5 and Max=1.5.
With these tubelet transformations and the motions created in Section 5.3.3 we are
able to simulate a variety of subtle motions in videos, making the model data-efficient.
By learning the similarity between the same tubelet overlaid onto different videos, our
model pays less attention to spatial features, instead learning to represent these subtle
motions. This makes the learned representation generalizable to different domains
and action granularities.

5.4 Experiments

5.4.1 Datasets, Evaluation & Implementation

Pretraining Datasets. Following prior work [169, , 41, , , 94] we use
Kinetics-400 [113] for self-supervised pretraining. Kinetics-400 is a large-scale
action recognition dataset containing 250K videos of 400 action classes. To show data
efficiency, we also pretrain with Mini-Kinetics [254], a subset containing 85K videos
of 200 action classes.

Downstream Evaluation. To evaluate the video representations learned by our
tubelet contrast, we finetune and evaluate our model on various downstream datasets
summarized in Table 5.1. Following previous self-supervised work, we evaluate on
standard benchmarks: UCF101 [209] and HMDBS1 [122]. These action recognition
datasets contain coarse-grained actions with domains similar to Kinetics-400. For
both, we report top-1 accuracy on split 1 from the original papers. We examine
the generalizability of our model with the SEVERE benchmark [224] proposed in
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Evaluation Factor  Experiment Dataset Task #Classes #Finetuning #Testing Eval Metric
Standard UCF101 UCF 101 [209] Action Recognition 101 9,537 3,783 Top-1 Accuracy
HMDBS51 HMDB 51 [122] Action Recognition 51 3,570 1,530 Top-1 Accuracy
Domain Shift SSv2 Something-Something [74] Action Recognition 174 168913 24,777 Top-1 Accuracy
Gym99 FineGym [197] Action Recognition 99 20,484 8,521 Top-1 Accuracy
. UCF (103) UCF 101 [122] Action Recognition 101 1,000 3,783 Top-1 Accuracy
Sample Efficiency = 103)  FineGym [197] Action Recognition 99 1,000 8521 Top-1 Accuracy
Action Granularit FX-S1 FineGym [197] Action Recognition 11 1,882 777 Mean Class Acc
y UB-S1 FineGym [197] Action Recognition 15 3,511 1,471 Mean Class Acc
Task Shift UCE-RC UCFRep [270] Repetition Counting - 41 105 Mean Error
Charades Charades [202] Multi-label Recognition 157 7,985 1,863 mAP

TABLE 5.1: Benchmark Details for the downstream evaluation factors, experiments, and
datasets we cover. For non-standard evaluations, we follow the SEVERE benchmark [224].
For self-supervised pretraining, we use Kinetics-400 or Mini-Kinetics.

chapter 4. This consists of eight experiments over four downstream generalization
factors: domain shift, sample efficiency, action granularity, and task shift. Domain shift
is evaluated on Something-Something v2 [74] (SSv2) and FineGym [197] (Gym99)
which vary in domain relative to Kinetics-400. Sample efficiency evaluates low-shot
action recognition on UCF101 [209] and FineGym [197] with 1,000 training samples,
referred to as UCF (10%) and Gym (10%). Action granularity evaluates semantically
similar actions using FX-S1 and UB-S1 subsets from FineGym [197]. In both subsets,
action classes belong to the same element of a gymnastic routine, e.g., FX-S1 is types
of jump. Task shift evaluates tasks beyond single-label action recognition. Specifically,
it uses temporal repetition counting on UCFRep [276], a subset of UCF-101 [276],
and multi-label action recognition on Charades [202]. The experimental setups are
detailed in Table 5.1 and all follow SEVERE [224].

Tubelet Generation and Transformation. Our clips are 16 112x112 frames with
standard spatial augmentations: random crops, horizontal flip, and color jitter. We
randomly crop 2 patches to generate M =2 tubelets (Equation 5.4). The patch size
H xW' is uniformly sampled from [16x 16, 64 x64]. We also randomly sample a
patch shape from a set of predefined shapes. For linear motions, we use A=[40—80]
displacement difference. For non-linear motion, we use N=48 and a smoothing factor
of =8 (Equation 5.6). For linear motion and all tubelet transformations, we use K=3
keyframes.

Networks, Pretraining and Finetuning. We use R(2+1)D-18 [229] as the video
encoder, following previous self-supervision works [240), , , 45,41, ]. The
projection head is a 2-layer MLP with 128D output. We use momentum contrast [85]
to increase the number of negatives |N'| (Equation 5.1) to 16,384 for Mini-Kinetics
and 65,536 for Kinetics. We use temperature T=0.2 (Equation 5.1). The model is op-
timized using SGD with momentum 0.9, learning rate 0.01, and weight decay 0.0001.
We use a batch size of 32 for Mini-Kinetics and 128 for Kinetics, a cosine sched-
uler [146], and pretrain for 100 epochs. After pretraining, we replace the projection
head with a task-dependent head following SEVERE [224]. The whole network is fine-
tuned for the downstream task with labels. We provide finetuning and evaluation details
in Appendix C. Code is available at https://github.com/fmthoker/tubelet-contrast.
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UCF (10%) Gym (10%) SSv2-Sub UB-S1

Temporal Contrast

Baseline 57.5 29.5 442 84.8
Tubelet Contrast

Tubelet Generation 48.2 28.2 40.1 84.1
Tubelet Motion 63.0 45.6 47.5 90.3
Tubelet Transformation  65.5 48.0 479 90.9

TABLE 5.2: Tubelet-Contrastive Learning considerably outperforms temporal contrast
on multiple downstream settings. Tubelet motion and transformations are key.

5.4.2 Ablation Studies & Analysis

To ablate the effectiveness of individual components we pretrain on Mini-Kinetics
and evaluate on UCF (10%), Gym (10%), Something-Something v2 and UB-S1. To
decrease the finetuning time we use a subset of Something Something (SSv2-Sub)
with 25% of the training data (details in Appendix C). Unless specified otherwise, we
use non-linear motion and rotation to generate tubelets.

Tubelet-Contrastive Learning. Table 5.2 shows the benefits brought by our tubelet-
contrastive learning. We first observe that our full tubelet-contrastive model improves
considerably over the temporal contrastive baseline, which uses MoCo [85] with a
temporal crop augmentation. This improvement applies to all downstream datasets
but is especially observable with Gym (10%) (+18.5%) and UB-S1 (+6.1%) where
temporal cues are crucial. Our model is also effective on UCF (103) (+8.0%) where
spatial cues are often as important as temporal ones. These results demonstrate that
learning similarities between synthetic tubelets produces generalizable, but motion-
focused, video representations required for finer temporal understanding.

It is clear that the motion within tubelets is critical to our model’s success as

contrasting static tubelets obtained from our tubelet generation (Section 5.3.2) actually
decreases the performance from the temporal contrast baseline. When tubelet motion
is added (Section 5.3.3), performance improves considerably, e.g., Gym (10%) +17.4%
and SSv2-Sub +7.4%. Finally, adding more motion types via tubelet transformations
(Section 5.3.4) further improves the video representation quality, e.g., UCF (10%)
+2.5% and Gym (10%) +2.4%. This highlights the importance of including a variety of
motions beyond what is present in the pretraining data to learn generalizable video
representations.
Tubelet Motions. Next, we ablate the impact of the tubelet motion type (Section 5.3.3)
without transformations. We compare the performance of static tubelets with no
motion, linear motion, and non-linear motion in Table 5.3. Tubelets with simple linear
motion already improve performance for all four datasets, e.g., +6.4% on Gym (103).
Using non-linear motion further improves results, for instance with an additional
+11.0% improvement on Gym (103). We conclude that learning from non-linear
motions provides more generalizable video representations.
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Tubelet Motion UCF (10%) Gym (10%) SSv2-Sub UB-S1

No motion 48.2 28.2 40.1 84.1
Linear 55.5 34.6 45.3 88.5
Non-Linear 63.0 45.6 47.5 90.3

TABLE 5.3: Tubelet Motions. Learning from tubelets with non-linear motion benefits
multiple downstream settings.

Transformation UCF (10%) Gym (10%) SSv2-Sub UB-S1

None 63.0 45.6 47.5 90.5
Scale 65.1 46.5 47.0 90.5
Shear 65.2 47.5 47.3 90.9
Rotation 65.5 48.0 47.9 90.9

TABLE 5.4: Tubelet Transformation. Adding motion patterns to tubelet-contrastive
learning through transformations improves downstream performance. Best results for
rotation.

Tubelet Transformation. Table 5.4 compares the proposed tubelet transformations
(Section 5.3.4). All four datasets benefit from transformations, with rotation being the
most effective. The differences in improvement for each transformation are likely due
to the types of motion present in the downstream datasets. For instance, Gym (10%)
and UB-S1 contain gymnastic videos where actors are often spinning and turning but
do not change in scale due to the fixed camera, therefore rotation is more helpful than
scaling. We also experiment with combinations of transformations in Appendix C but
observe no further improvement.

Number of Tubelets. We investigate the number of tubelets used in each video in
Table 5.5. One tubelet is already more effective than temporal contrastive learning,
e.g.,29.5% vs. 39.5% for Gym (10%). Adding two tubelets improves accuracy on all
datasets, e.g., +8.5% for Gym (103).

Analysis of Motion-Focus. To further understand what our model learns, Figure 5.5
visualizes the class agnostic activation maps [ 0] without finetuning for the baseline
and our approach. We observe that even without previously seeing any FineGym data,

#Tubelets UCF (10%) Gym (10%) SSv2-Sub UB-SI

1 62.0 395 47.1 89.5
2 65.5 48.0 47.9 90.9
3 66.5 46.0 47.5 90.9

TABLE 5.5: Number of Tubelets. Overlaying two tubelets in positive pairs improves
downstream performance.
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Temporal Contrastive Learning Tubelet-Contrastive Learning (Ours)

FIGURE 5.5: Class-Agnostic Activation Maps without Finetuning for the temporal
contrastive baseline and our tubelet-contrast. Our model better attends to regions with

motion.
Linear Classification Finetuning
UCF101  Gym99  UCFI101 Gym99
Temporal Contrast ~ 58.9 19.7 87.1 90.8
Tubelet Contrast 30.0 34.1 91.0 92.8

TABLE 5.6: Appearance vs Motion. Our method learns to capture motion dynamics
with pretraining and can easily learn appearance features with finetuning.

our approach attends better to the motions than the temporal contrastive baseline,
which attends to the background regions. This observation is supported by the linear
classification and finetuning results on UCF101 (appearance-focused) and Gym99
(motion-focused) in Table 5.6. When directly predicting from the learned features with
linear classification, our model is less effective than temporal contrast for appearance-
based actions in UCF101, but positively affects actions requiring fine-grained motion
understanding in Gym99. With finetuning, our tubelet-contrastive representation
is able to add spatial appearance understanding and maintain its ability to capture
temporal motion dynamics, thus it benefits both UCF101 and Gym99.

5.4.3 Video-Data Efficiency

To demonstrate our method’s data efficiency, we pretrain using subsets of the Kinetics-
400. In particular, we sample 5%, 10%, 25%, 33% and 50% of the Kinetics-400 train-
ing set with three random seeds and pretrain our model and the temporal contrastive
baseline. We compare the effectiveness of these representations after finetuning
on UCF (103), Gym(103), SSv2-Sub, UB-S1, and HMDB5I1 in Figure 5.6. On all
downstream setups, our method maintains similar performance when reducing the
pretraining data to just 25%, while the temporal contrastive baseline performance
decreases significantly. Our method is less effective when using only 5% or 10% of
the data, but remarkably still outperforms the baseline trained 100% for Gym (10%),



5.4. Experiments 73
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FIGURE 5.6: Video-Data Efficiency of Tubelet-Contrastive Learning. Our approach

maintains performance when using only 25% of the pretraining data. When using 5% of

the pretraining data, our approach is still more effective than using 100% with the baseline

for Gym (10%), UB-S1, and HMDBS51. Results are averaged over three pretraining runs
with different seeds.

UB-S1, and HMDB. We attribute our model’s data efficiency to the tubelets we add to
the pretraining data. In particular, our non-linear motion and transformations generate
a variety of synthetic tubelets that simulate a greater variety of fine-grained motions
than are present in the original data.

5.4.4 Standard Evaluation: UCF101 and HMDB51

We first show the effectiveness of our proposed method on standard coarse-grained
action recognition benchmarks UCF101 and HMBDS51, where we compare with
prior video self-supervised works. For a fair comparison, we only report methods
in Table 5.7 that use the R(2+1)D-18 backbone and Kinetics-400 as the pretraining
dataset.

First, we observe that our method obtains the best results for UCF101 and
HMDB51. The Appendix C shows we also achieve similar improvement with the R3D
and I3D backbones. In particular, with R(2+1)D our method beats CtP [237] by 2.6%
and 2.4%, TCLR [41] by 2.8% and 4.1%, and TE [101] by 2.8% and 1.9% all of which
aim to learn finer temporal representations. This confirms that explicitly contrasting
tubelet-based motion patterns results in a better video representation than learning
temporal distinctiveness or prediction. We also outperform FAME [45] by 6.2% and
9.6% on UCF101 and HMDB51. FAME aims to learn a motion-focus representation
by pasting the foreground region of one video onto the background of another to
construct positive pairs for contrastive learning. We however are not limited by the
motions present in the set of pretraining videos as we simulate new motion patterns
for learning. We also outperform prior multi-modal works which incorporate audio or
explicitly learn motion from optical flow. Since our model is data-efficient, we can
pretrain on Mini-Kinetics and still outperform all baselines which are trained on the
3x larger Kinetics-400.
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Method Modality UCF101 HMDB51
VideoMoCo [169] RGB 78.7 49.2
RSPNet [173] RGB 81.1 44.6
SRTC [139] RGB 82.0 51.2
FAME [45] RGB 84.8 53.5
MCN [138] RGB 84.8 54.5
AVID-CMA | ] RGB+Audio 87.5 60.8
TCLR [41] RGB 88.2 60.0
TE[101] RGB 88.2 62.2
CtP [237] RGB 88.4 61.7
MotionFit [69] RGB+Flow 88.9 61.4
GDT | ] RGB+Audio 89.3 60.0
This chapter * RGB 90.7 65.0
This chapter RGB 91.0 64.1

TABLE 5.7: Standard Evaluation: UCF101 and HMDBS1 using R(2+1)D. Gray lines

indicate use of additional modalities during self-supervised pretraining. Note that our

method pretrained on Mini-Kinetics (1) outperforms all methods which pretrain on the
3x larger Kinetics-400.

5.4.5 SEVERE Generalization Benchmark

Next, we compare to prior works on the challenging SEVERE benchmark [224], which
evaluates video representations for generalizability in domain shift, sample efficiency,
action granularity, and task shift. We follow the same setup as in the original SEVERE
benchmark and use an R(2+1)D-18 backbone pretrained on Kinetics-400 with our
tubelet-contrast before finetuning on the different downstream settings. Results are
shown in Table 5.8.

Domain Shift. Among the evaluated methods our proposal achieves the best results on
SSv2 and Gym99. These datasets differ considerably from Kinetics-400, particularly
in regard to the actions, environment and viewpoint. Our improvement demonstrates
that the representation learned by our tubelet-contrast is robust to various domain
shifts.

Sample Efficiency. For sample efficiency, we achieve a good gain over all prior works
on Gym (10%), e.g., +20.7% over TCLR [41] and +14.1% over CtP [237]. Notably, the
gap between the second best method GDT [171] and all others is large, demonstrating
the challenge. For UCF (10%), our method is on par with VideoMoCol[ 169] and CtP
but is outperformed by GDT and RSPNet [ 73]. This is likely due to most actions in
UCF101 requiring more spatial than temporal understanding, thus it benefits from
the augmentations used by GDT and RSPNet. Our motion-focused representation
requires more finetuning samples on such datasets.

Action Granularity. For fine-grained actions in FX-S1 and UB-S1, our method
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Domains Samples Actions Tasks
Backbone SSv2 Gym99 UCF (10%) Gym (10% FX-S1 UB-SI UCF-RC| Charades Mean Rank]
SVT | ] ViT-B 59.2 62.3 83.9 18.5 35.4 55.1 0.421 35.5 51.0 8.9
VideoMAE | ] ViT-B 69.7 85.1 77.2 27.5 37.0 78.5 0.172 12.6 58.1 8.3
Supervised [229]  R(2+1)D-18 60.8  92.1 86.6 51.3 79.0 87.1 0.132 23.5 70.9 39
None R(2+1)D-18 57.1 89.8 38.3 22.7 46.6 82.3 0.217 7.9 529 11.6
SeLaVi [8] R(2+1)D-18 56.2 889 69.0 30.2 51.3 80.9 0.162 8.4 58.6 11.0
MoCo [85] R(2+1)D-18 57.1  90.7 60.4 30.9 65.0 84.5 0.208 8.3 59.5 9.1
VideoMoCo [169] R(2+1)D-18 59.0  90.3 65.4 20.6 57.3 83.9 0.185 10.5 58.6 9.1
Pre-Contrast [218] R(2+1)D-18 569  90.5 64.6 27.5 66.1 86.1 0.164 8.9 60.5 9.0
AVID-CMA [158] R(2+1)D-18 52.0 904 68.2 334 68.0 87.3 0.148 8.2 61.6 9.0
GDT [171] R(2+1)D-18 58.0  90.5 78.4 45.6 66.0 83.4 0.123 8.5 64.8 8.6
RSPNet [173] R(2+1)D-18 59.0 91.1 74.7 322 65.4 83.6 0.145 9.0 62.6 8.0
TCLR [41] R(2+1)D-18 59.8 91.6 72.6 26.3 60.7 84.7 0.142 12.2 61.7 7.6
CtP [237] R2+1)D-18 59.6  92.0 61.0 329 79.1 88.8 0.178 9.6 63.2 5.6
This Chapter* R(2+1)D-18 594 922 65.5 48.0 78.3 90.9 0.150 9.0 66.0 54
This Chapter R(2+1)D-18 60.2  92.8 65.7 47.0 80.1 91.0 0.150 10.3 66.5 4.1

TABLE 5.8: SEVERE Generalization Benchmark. Comparison with prior self-

supervised methods for generalization to downstream domains, fewer samples, action

granularity, and tasks. | indicates lower is better. Results for baselines are taken from SE-

VERE [224]. Our method generalizes best, even when using the 3x smaller Mini-Kinetics
dataset (1) for pretraining.

achieves the best performance, even outperforming supervised Kinetics-400 pre-
training. We achieve a considerable improvement over other RGB-only models, e.g.,
+19.6% and +6.3% over TCLR, as well as audio-visual models, e.g., +14.1% and
+7.6% over GDT. These results demonstrate that the video representation learned
by our method are better suited to fine-grained actions than existing self-supervised
methods. We additionally report results on Diving48 [133] in the Appendix C.
Overall SEVERE Performance. Finally, we compare the mean and the average
rank across all generalizability factors. Our method has the best mean performance
(66.5) and achieves the best average rank (4.1). When pretraining with the 3x smaller
Mini-Kinetics our approach still achieves impressive results. We conclude our method
improves the generalizability of video self-supervised representations across these
four downstream factors while being data-efficient.

Task Shift. For the task shift to repetition counting, our method is on par with AVID-
CMA [158] and RSPNet, but worse than GDT. For multi-label action recognition
on Charades, our approach is 3rd, comparable to VideoMoCo but worse than TCLR.
This suggests the representations learned by our method are somewhat transferable to
tasks beyond single-label action recognition. However, the remaining gap between
supervised and self-supervised highlights the need for future work to explore task
generalizability further.

Comparison with Transformers. Table 5.8 also contains recent transformer-based
self-supervised works SVT [188] and VideoMAE [227]. We observe that both SVT
and VideoMAE have good performance with large amounts of finetuning data (SSv2),
in-domain fine-tuning (UCF(103)), and multi-label action recognition (Charades).
However, they considerably lag in performance for motion-focused setups Gym99,
FX-S1, UB-S1, and repetition counting compared to our tubelet contrast with a small
CNN backbone.
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5.5 Conclusion

This chapter presents a contrastive learning method to learn motion-focused video rep-
resentations in a self-supervised manner. Our model adds synthetic tubelets to videos
so that the only similarities between positive pairs are the spatiotemporal dynamics of
the tubelets. By altering the motions of these tubelets and applying transformations
we can simulate motions not present in the pretraining data. Experiments show that
our proposed method is data-efficient and more generalizable to new domains and
fine-grained actions than prior self-supervised methods.
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Appendix A

Supplementary Materials for
Skeleton-Contrastive Learning

In this Appendix, we provide details on the training procedure for each downstream
task in Section A.1 and a comparison of our method to supervised-approaches for
skeleton-based action recognition in Section A.2. We examine the effect of the hy-
perparameters of our proposed augmentations in Section A.3. Finally, we show the
performance of combining multiple-skeleton representations for the downstream task
of action recognition in Section A.4 and provide some qualitative results of our method
in Section A.S.

A.1 Downstream Training Details

For the downstream tasks we follow Chen et al. [29] and remove the projection head
of the pre-trained query encoder, as the projection head tends to focus mostly on
information specific to the pretext task. For the 3D action recognition tasks, we then
append a classifier to the pre-trained query encoder, while for 3D action retrieval we
directly use the feature space without adding a classification head. The dimensionality
of the feature space is dependent on the input skeleton-representation used in the
downstream task. It is either 4096 (for X"™5) 2048 (for X5E9) or 256 (for X570).
For downstream tasks we use a temporal crop of length 64. During training this is
sampled randomly, while for evaluation we sample a center crop.

3D Action Recognition. For this task, the weights of the pre-trained encoder are
frozen and only the linear classifier is trained as in [ 136, ]. An SGD optimizer is
used with a momentum of 0.9 and learning rate of 0.1. The linear classifier is trained
for a total of 80 epochs and learning rate is reduced by a factor of 10 after the 50th
and 70th epoch.

3D Action Retrieval For this task we follow [211] to extract the encoder features of
the training set. Then, we apply a kNN classifier with k=1 using these features and
their corresponding action labels to assign action classes. Finally, during testing we
assign to the unseen sample the action class of the closest neighbour in the training
set.
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Semi-Supervised 3D Action Recognition. For this task, we finetune both the classifier
and the pre-trained encoder weights jointly as in [ 36]. An Adam optimizer is used
to train the network for a total of 50 epochs with a learning rate of 0.0001, which is
reduced by a factor of 10 after both the 30th and 40th epoch.

Transfer Learning for 3D Action Recognition. For this task we again follow [136]
and finetune the classifier and the pre-trained encoder together. An Adam optimizer is
used to train the network for a total of 50 epochs with a learning rate of 0.0001 which
is reduced by a factor of 10 after 30th and 40th epoch.

A.2 Supervised Approaches

While our method outperforms prior self-supervised learning works for 3D action
recognition, it is also useful to know how this compares to state-of-the-art supervised
approaches. Table A.1 shows the performance of various supervised approaches
on the NTU 60 & 120 datasets. We compare these results to the performance of
our sequence-based query encoder f SEQ (a simple 3-layer Bi-GRU) trained end-to-
end from randomly initialized weights (supervised-only) and finetuned end-to-end
from the weights learnt from our inter-skeleton contrastive learning approach (with
pre-training). Note that this setting is different to the experiment performed in the
main chapter, which only finetunes the final layer in order to demonstrate the raw
performance of the features, rather than the boost they can provide to supervised
training. It is evident from the table our method is competitive with many supervised
approaches, even though the encoder we use is not state-of-the-art. It is also clear that
our contrastive pre-training can boost the performance over supervised-only training.
It is likely our inter-skeleton contrastive pre-training can also be used to boost the
performance of more complex state-of-the-art encoders too.

A.3 Augmentation Hyperparameter Ablations

In this section we study the impact of hyperparameters |j| and L4, of the spatial joint
jittering and temporal crop-resize augmentations on the downstream performance. We
use X'MG gkeleton representation and evaluate on the cross-view protocol of NTU
RGB+D 60 for the downstream task of 3D action classification. We first pre-train
an intra-contrastive framework using X'MC representation with only the relevant
augmentation and then train a linear classifier with action labels on top of the frozen
features of the query encoder f;.

A.3.0.1 Effect of number joints to jitter |/|

Here, we ablate over the number of joints to jitter |j| in our joint jittering augmentation.
This parameter controls the number of joints to be jittered for the augmented view.
Table A.2 shows the downstream 3D action classification performance of different
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NTU RGB+D 60 NTU RGB+D 120

Method Xx-view  Xx-sub  x-setup  x-sub
PA-LSTM [196] 52.8 50.1 26.3 25.5
ST-LSTM [142] 1.7 69.2 57.9 55.7
GCA-LSTM [140] 84.0 76.1 59.2 58.3
VA-LSTM [278] 87.7 79.4 - -

ST-GCN [260] 88.3 81.5 73.2 70.7
Shift-GCN [32] 96.5 90.7 85.9 87.6
MS-G3D Net [145] 96.2 91.5 86.9 88.4

This chapter (supervised-only)  87.8 72.9 68.2 66.3
This chapter (with-pretraining)  90.4 79.3 75.4 73.1

TABLE A.1: Comparison with supervised only training for 3D action recognition.
Pre-training with our inter-skeleton contrast improves the performance over supervised
only training, especially for the more challenging cross-subject and cross-setup protocols.

values of |j|. We found that jittering around half the joints (|j|=10,15) performed
best. Using very small or a large values for |j| e.g. 2 or 20 is sub-optimal as with
too few jittered joints the augmented views become highly similar, while with many
jittered joints there remains little commonality between the augmented sequences. For
all our experiments we use |j|=15 in our joint jittering augmentation as it achieve
best downstream performance.

Number of jittered joints |/|
Augmentation 2 5 10 15 20
Spatial-Jittering 65.6 67.5 694 74.6 70.6

TABLE A.2: Effect of number of joints to jitter on the downstream task of 3D action
classification on cross-view protocol of NTU RGB+D 60. Increasing the number of joints
to jitter improves the downstream performance.

A.3.0.2 Effect of temporal length ratio L,.;,

We next ablate over the distribution from which temporal length ratio L., €
[Imin, 1.0] is sampled in our temporal crop-resize augmentation, see Equation equa-
tion 3.3. The parameter [,,;; controls the minimum length of the temporal crop, which
can be sampled for the augmented view. Table A.3 shows the 3D action classification
performance with different minimum samples lengths [,;,;,. A smaller l,,,;,, and thus
a larger temporal range improves the downstream performance. We therefore use
Lmin=0.1, i.e. Ly4sio € [0.1,1.0], for all our experiments.
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lmin
Augmentation 01 03 05
Temporal Crop-Resize 62.5 62.0 60.8

TABLE A.3: Effect of temporal length ratio on the downstream task of 3D action
classification on cross-view protocol of NTU RGB+D 60. The bigger the range, the better
the downstream performance.

A.4 Multi-representation Downstream

In this section, we examine the effect of combining skeleton representations when
finetuning for the downstream task of 3D action recognition. All of our previous
results use only one representation in the downstream task for efficiency, even when
representations are trained together in our inter-skeleton contrast. Here we report
the results of combining representations in the downstream task for both intra and
inter-skeleton contrast. For intra-skeleton, each skeleton representation is first pre-
trained separately (see Section 3.3.2) and then their query encoders are combined for
the downstream task. For inter-skeleton two skeleton representations are pretrained
together (see Section 3.3.3) with their query encoders also combined for the down-
stream task. Table A.4 shows the results of these experiments alongside the results
when using only one representation during the downstream task from Table 3.6. We
again evaluate on the cross-view protocol of NTU RGB+D 60 by training a linear
classifier on frozen features. In Table A.4 we also highlight the number of parameters
needed for each representation in this downstream task. The downstream encoders
(i.e query encoders) for the skeleton representations are as a 3-Layer BI-GRU with
H=1024 units) for X°EQ, an HCN [128] model for X'MGC and a joint-based A-GCN
[199] network for X5TG (see Implementation details Section 3.4.2).

From Table A.4, we first observe when combining representations in the down-
stream task pretraining with inter-skeleton contrast outperforms the intra-skeleton
pretraining for all combinations. In this setting both the computational costs required
for pretraining and inference of the intra and inter-skeleton contrast are same as
training two representations separately requires the same computation as training
them together (inter), thereby showing the superiority of our inter-skeleton contrast.

As we saw in the main chapter, inter-skeleton contrast shows considerable improve-
ment in performance over the intra-skeleton contrast for the each single representation
downstream evaluation, with XSEQ obtaining the best results. However, it is worth
noting that while the number of parameters required for inference are the same,
the inter-skeleton does require additional computational resources for pretraining
since each representation is required to be pre-trained with one of the other skeleton
representations while in intra-skeleton each representation is pretrained alone.

We also observe that combining representations in the downstream task improves
over using a single representation in the majority of cases, with the combination
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XSEQ and X5TC showing the best results. Note that this improvement comes with
an additional cost of model size during the inference time. With these results we can
conclude that our model can be used for all skeleton representations individually or in
combination based on the trade off between the pretraining computational cost, the
inference model size and the performance.

Downstream Reps. Intra Inter # Inference Params.

XIMG 79.6 81.7 1.0M
XsTG 72.5 789 3.0M
XSEQ 82.5 85.2 10.0M
XIMG 4 xSTG 80.3 81.8 4.0M
XIMG § xSEQ 80.3 82.6 11.0M
XSEQ 4 XSTG 84.5 86.0 14.0M

TABLE A.4: Combining representations for 3D action recognition. We show the trade-

off between accuracy and number of parameters involved in the downstream task when

using two representations to fine-tune the features learnt from both intra and inter-skeleton

pretraining. Pretraining with our inter-skeleton contrast learns better features for each
representation whether used individually or combined.

A.5 Qualitative Results

A.5.0.1 Visualization of learned features

First we visualize the features by our inter-skeleton contrastive learning in comparison
to those learned by Su ef al. [211], one of the best performing methods on both the 3D
action recognition and retrieval tasks. We randomly select 10 of the 60 action classes,
so as not to overcrowd the figure, and plot their features using t-SNE. This is repeated
three times for three different subsets of action classes. We observe from the Figure
A.1 that the features learned by our method form better clusters and are therefore
more discriminatory and more suitable for the downstream tasks of action recognition
and retrieval.

A.5.0.2 3D Action retrieval results

In Figure A.2, we visualize the results of 3D action retrieval. For a given query video
we retrieve the top four nearest neighbours in the feature space learned by Su et
al. [211] and by our inter-skeleton contrastive learning. We observe from Figure A.2
that the nearest neighbours in the feature space are generally more relevant to the query
when using our method. The videos retrieved by Su et al. tend to be from different
actions, which contain similar body poses. For instance ‘kicking’, ‘staggering’ and
‘hop on one leg’ all contain poses with one leg off the floor. Instead, our method is
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Component 2

Component 2

Component 1 This chapter

FIGURE A.1: t-SNE visualization of learned features on NTU RGB+D 60 dataset. Each

plot shows the features of 10 randomly selected action classes. Top row shows the features

learned by Su et al. [211] and bottom row shows the corresponding features learned by

our inter-skeleton contrastive learning. Our methods learns a more discriminatory feature

space forming better clusters which are more dense with most samples from same action
class and distant from other clusters as compared to [211].

able to better focus on the motion of the query action and retrieve other instances of
the same action.
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e Su et. al
Take off Shoe Take off Shoe

Take off Shoe

Take off Shoe Take off Shoe

Kicking another person

Staggering Hop on one leg

Kicking . This chapter

Kicking Kicking Kicking Walk towards eachother

Pointing Finger Pointing Finger

o This chapter

Taking Selfie

Taking Selfie Taking Selfie Taking Selfie Pointing Finger

FIGURE A.2: 3D Action retrieval results on NTU RGB+D 60 dataset. For each query,

the first row shows nearest neighbours learned by Su et al. [211] and the second row

shows the nearest neighbours in the feature space learnt by our inter-skeleton contrastive

learning. For our method most neighbours belong to the same action classes. All results

were obtained using 3D skeleton data, however, for the ease of visualization/interpretation
we show the corresponding RGB videos instead of the skeleton sequences.
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Appendix B

Supplementary Materials for
Benchmark Sensitivity

In Appendix B.1, we provide details of the video self-supervised models we use in our
evaluation study. Appendix B.2 provides details on the experimental setup for each of
our downstream sensitivity factors. We also show correlation plots between current
benchmarks and the experimental results for each sensitivity factor in Appendix B.3.
Feature similarities between supervised pre-training and each self-supervised pre-
training method are shown in Appendix B.4. In Appendix B.5, we describe domain
difference between the downstream video datasets we use and the attributes we use to
characterize this difference. We show the standard deviations of the experiments on
the SEVERE benchmark Appendix B.6 and also compare the SEVERE benchmark to
results on HMDBS51 action recognition in Appendix B.7. Finally, we report results of
some additional experiments in Appendix B.8 and Appendix B.9 that we did not have
room for in the main paper.

B.1 Details of the Evaluated Self-Supervised Models

We use a variety of different self-supervised methods in our paper, here we describe
each method:

MoCo [30] is a contrastive learning method proposed for representation learning
in images. Positives are created by performing different spatial augmentations on a
video. Negatives are other videos. To obtain negatives beyond the current batch, MoCo
proposes a momentum encoder which maintains a queue of momentum-updated data
samples from previous batches.

SeLaVi [8] views the audio and visual modalities as different augmentations of a
video and learns with a cross-modal clustering pretext task.

VideoMoCo [169] extends MoCo to the temporal domain. It does this with an ad-
versarial dropout augmentation which removes the frames the model considers most
important. With the contrastive learning loss, the model learns invariance to this
adversarial frame dropout alongside the spatial augmentations used in MoCo.
Pretext-Contrast [217] combines the pretext task approach with contrastive learning.
As its pretext task it uses video cloze procedure [ | 47] where the goal is to predict which
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augmentations have been applied to a video clip. For the contrastive learning objective
different temporal shifts, i.e. distinct clips from the same video, are considered.
RSPNet [173] also combines pretext and contrastive tasks, with a focus on video speed.
The pretext task is to predict the relative difference in speed between two versions
of the same video, while the contrastive task creates extra positives and negatives by
augmenting videos with different speeds along with the spatial augmentations.
AVID-CMA [158] is a multi-modal contrastive learning method which uses audio in
addition to the visual modality. It first uses cross-modal contrastive learning where
the one modality is used as the positives and the other as the negatives. Then it uses
within modality contrastive learning where additional positives which have high audio
and visual similarity are sampled.
CtP [237] performs self-supervised learning through a “catch the patch” pretext task.
The goal in this task is to predict the trajectory of an image patch which is resized and
moved through a sequence of video frames.
TCLR [41] is a contrastive method which encourages features to be distinct across
the temporal dimension. It does this by using clips from the same video as negatives.
Therefore, instead of encouraging invariance to temporal shift as other methods to, it
encourages the model to be able to distinguish between different shifts. It also uses an
extensive set of spatial augmentations.
GDT [171] is a multi-modal contrastive method which composes a series of different
augmentations and encourages model to learn invariance to some and learns to distin-
guish between others. We use the best performing version of GDT which encourages
invariance to spatial augmentations, the audio and visual modalities and temporal
reversal, while encouraging the model to distinguish between different temporal shifts.
While all models are pre-trained on Kinetics-400 and use an R(2+1)D-18 backbone
with 112x112 spatial input size, there are some smaller differences in how the models
are trained. Due to the computational cost of training these models we download
publicly available models or obtain them from the authors, therefore we cannot
control for these smaller differences in the pre-training set up. These differences
include number of pre-training epochs, batch size, number of video frames used and
spatial and temporal augmentations. We list these differences in Table B.1.

B.2 Downstream Experimental Details

B.2.1 Downstream Domain

In Section 4.3 we investigate to what extent self-supervised methods learn features
applicable to action recognition in any domain. Here we explain the datasets, splits
and training details we use to do this.

Datasets We report our experiments on the following datasets:

UCF-101 [209] 1s currently one of the most widely used datasets for evaluating video
self-supervised learning models. It consists of YouTube videos from a set of 101
coarse-grained classes with a high overlap with actions in Kinetics-400. We use the
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Spatial Augmentations Temporal Augmentations
Method Epochs Batch Num Random Horiz. Grayscale Color Gaussian Scaling  Shift Reversal — Speed
Size  Frames Crop Flip Jitter Blur
MoCo 200 128 16 v v 4 4 4
SeLaVi 200 1024 30 v v
VideoMoCo 200 128 32 v v v v
Pretext-Contrast 200 16 16 v v v v v v
RSPNet 200 64 16 v 4 v 4 v
AVID-CMA ¥ 400 256 16 v v v v
CtP 90 32 16
TCLR 100 40 16 v v v 4 '4
GDTt 100 512 30 v 4 4 v
Supervised 45 32 16 v v v

TABLE B.1: Pre-training differences of our evaluated self-supervised methods. While all

models are pre-trained with the same backbone and dataset, there are differences in how many

epochs they were trained for, the batch size and number of frames they use and the spatial and

temporal augmentations they are encouraged to be invariant to. (1) represents methods that use
Audio as the extra modality during pretraining.

first standard split proposed in the original paper [209] containing 9,537 training and
3,783 testing samples for the 101 action classes.
NTU-60: [195] consists of daily human actions captured in a controlled lab setting
with a fixed number actors. Although it has some overlap with Kinetics-400 actions,
it is quite different visually due to the setting. We use the cross-subject protocol
proposed in [195] to split the data into 40,320 training and 16,560 testing samples for
60 action classes.
Gym-99. We use FineGym version 1.0 [197] which is a dataset of fine-grained actions
constructed from recorded gymnastic competitions. We use the Gym 99 subset which
contains 99 action classes with 20,484 and 8,521 samples in the train and test sets
respectively.
SS-v2: [74] is a crowdsourced collection of first-person videos aimed to instill common-
sense understanding. It differs significantly with respect to Kinetics-400 in terms of
visual appearance and point-of-view. We use the original dataset splits from [74]
containing 168,913 training and 24,777 testing samples for 174 action classes.
EPIC-Kitchens-100: [39] is a large-scale egocentric dataset consisting of daily actions
performed in a kitchen. It has annotations for verbs (97) and nouns (300) and the
action is defined a tuple of these. Like SS-v2, EK-100 also differs significantly from
Kinetics-400 in terms of visual appearance and point-of-view. We use standard splits
from [39] containing 67,217 samples in training set and 9,668 in the validation set. In
the main paper we only aim to recognize the 97 verb classes, we provide results for
the noun and action recognition tasks in Appendix B.9.
Training Details In the initial hyper-parameter search, we perform a grid search over
various finetuning settings with learning rates between 0.1 - 0.00001, varying total
training epochs, data augmentations, and schedulers. We choose the optimal hyper-
parameters based on the performances of the pretraining models on the validation sets
of each dataset for each downstream task.

During training, we sample a random clip from each video of 32 frames with
standard augmentations i.e. a random multi-scale crop of size 112x112, random
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Finetuning Linear Evaluation

Dataset Batch Size Learning rate Epochs Steps Batch Size Learning rate Epochs Steps
UCF-101 32 0.0001 160 [60,100,140] 64 0.01 100 [40,80]
NTU-60 32 0.0001 180  [90, 140, 160] 64 0.01 120 [40,80,100]
Gym-99 32 0.0001 160 [60,100,140] 64 0.01 120 [40,80,100]
SS-v2 32 0.0001 45 [25, 35, 40] 64 0.01 40 [20,30]
EK-100 32 0.0025 30 [20, 25] 32 0.0025 30 [20, 25]
K-400 - - - - 64 0.01 40 [10,20,30]

TABLE B.2: Training details of finetuning and linear evaluation on various downstream datasets.
Learning rate is scheduled using a multip-step scheduler with y = 0.1 at corresponding steps for
each dataset. We train all the models with same hyperparameters for the corresponding dataset.

horizontal flipping and color jittering. We train with the Adam optimizer. The learning
rates, scheduling and total number of epochs vary across datasets and are shown in
Table B.2. However, each model is trained with the same hyper-parameters for the
corresponding dataset. For inference, we use 10 linearly spaced clips of 32 frames
each. For each frame we take a center crop which is resized to 112x112 pixels. To
calculate the action class prediction of a video, we take the mean of the predictions
from each clip and report top-1 accuracy.

B.2.2 Downstream Samples

In Section 4.4 we measure how sensitive current video self-supervised models are to
the amount of downstream samples. We do this by varying the size of the training
data starting from 1000 examples and doubling it until we reach the full train set.
We use the same data splits as in the downstream domain experiments, explained in
Appendix B.2.1, and sample a subset of video clips from the respective train sets.
We use the same random subset across the different models to make the comparison
fair. For each dataset, we use same training and testing procedure as the downstream
domain experiments, explained in Appendix B.2.1 and Table B.2.

B.2.3 Downstream Actions

In Section 4.5 we measure how benchmark-sensitive current video self-supervised
models are to downstream actions. We do so by measuring performance on different
subsets, defined in the FineGym dataset [ 1 97], which have increasing semantic simi-
larity. We provide the details of Gym-99, Gym-288 and the four different subsets we
use of Gym-99 below:

Gym-99 consists of 29k video clips of 99 different actions across the four different
gymnastic events in FineGym: Vault, Floor Exercise, Balance Beam and Uneven Bars.
This is a relatively balanced subset of the full FineGym dataset with all actions having
more than 80 occurrences. There are a total 20.5k training videos and 8.5k testing
videos.
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Vault is a subset of Gym 99 containing 1.5k videos of the 6 actions from the Vault
event. The training split contains 1.0k examples and the testing split contains 0.5k
examples.
Floor contains actions in the Floor Exercise event from Gym-99. It consists of 7.5k
instances of over 35 actions with a split of 5.3k for training and 2.2k for testing.
FX-S1 is a subset of actions of leaps, jumps and hops from the Floor event in Gym-99.
This subset of 11 actions contains a total of 2.6k video clips with 1.9k for training and
0.7k for testing.
UB-S1 contains 5k videos of 15 actions from the Uneven Bars event with a split of
3.5k for training and 1.5k for testing. The actions consist of different types of circles
around the bars.
Gym-288 is a long-tailed version of Gym 99 containing 32k videos with 22.6K
training and 9.6K testing samples. It adds 189 infrequent classes to the 99 classes in
Gym 99, where actions can have as little as 1 or 2 instances in training. This results in
a total of 288 action classes from the four different gymnastic events.

We follow the same training and evaluation procedure as that for finetuning Gym-
99 in downstream domain training. In particular, for training we sample a random
clip from each video of 32 frames with standard augmentations i.e. a random multi-
scale crop of size 112x112, random horizontal flipping and color jitter. Each model
is trained with the Adam optimizer using a learning rate of 0.0001 and multi-step
scheduler with y=0.1 at epochs [60, 100, 140] for 160 epochs. For inference, we
use 10 linearly spaced clips of 32 frames each. For each frame we take a center crop
which is resized to 112x112 pixels. To calculate the action class prediction of a video,
we take the mean of the predictions from each clip. For each subset, we compute
accuracy per action class and report the mean over all action classes as in the original
dataset [197].

B.2.4 Downstream Tasks

In Section 4.6 we investigate how sensitive self-supervised methods are to the down-
stream task and whether they generalize beyond action recognition. We provide details
of the experimental setup used for each task below.

Spatio-temporal action detection. The goal of this task is to predict the bounding
box of an actor in a given video clip, both spatially and temporally, along with the
action class. We use the UCF101-24 benchmark which is a subset of UCF-101 with
bounding box annotations for 3,207 videos from 24 action classes. We follow the
implementation of Kopiiklii et al. [118] using only a 3D-CNN branch for spatio-
temporal action detection. We initialize the 3D backbone with the pre-trained, self-
supervised R(2+1D)-18 models. A clip size of 16 frames is sampled from the video as
the input with standard data augmentations i.e. horizontal flipping, random scaling
and random spatial cropping. Each model is trained using the Adam optimizer with
an initial learning rate of le-4, weight decay of Se-4 and batch size 64, for a total of
12 epochs. The learning rate is decayed using a multi-step scheduler with y=0.5 at
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epochs [4,6,8,10]. For testing we also follow [ 18] and report video-mAP over all the
action classes.

Repetition counting. The goal of the this task is to estimate the number of times an
action repeats in a video clip. We use the UCFRep benchmark proposed by Zhang
et al. [277], which is a subset of UCF-101. The dataset consists of 526 videos with
3,506 repetition number annotations. From the annotated videos, 2M sequences of 32
frames and spatial size 112x112 are constructed which are used as the input. We use
the implementation from the original benchmark [277] with pre-trained R(2+1)D-18
models as the backbone networks. Each model is trained for 100 epochs with a batch
size of 32 using the Adam optimizer with a fixed learning rate of 0.00005. For testing,
we follow the protocol from [277] and report mean counting error.

Arrow-of-time. The goal of this task is to predict the direction (forward of backward)
of the video. We closely follow the setup used by Ghodrati et al. [71]. The full UCF-
101 dataset is used with two versions of each video, one normal and one reversed.
During training, for each video, we sample 8 frames linearly with a random offset,
with batch size of 12 and 112x112 center crops, number of epochs 10, learning rate of
1e~>. We do not use any augmentations or learning rate schedulers. During testing,
we sample 8 frames linearly. We report top-1 binary classification accuracy.
Multi-label classification on Charades. Charades [202] is made up of videos of
people recording everyday activities at their homes. Videos in Charades are longer
than the other datasets we use and the goal is to recognize multiple different actions in
each video. A per-class sigmoid output is used for multi-class prediction. We use the
implementation of Feichtenhofer et al. [60]' with the R(2+1)D-18 backbone. During
training, we use 32 frames with a sampling rate of 8. Since this task requires longer
temporal context, we observe that using more frames with higher sampling rate is
beneficial. We use a spatial crop of 112x112 and augmentations such as random short-
side scaling, random spatial crop and horizontal flip. We train for 57 epochs in total
with a batch size of 16 and a learning rate of 0.0375 with multi-step scheduler with
v = 0.1 at epochs [41, 49]. During testing, following [60], we spatio-temporally max-
pool predictions over 10 clips for a single video. We report mean average precision
(mAP) across classes.

Action detection on AVA. AVA [77] consists of clips extracted from films. We use
version v2.2 with bounding box annotations for spatio-temporal action detection of
temporally fine-grained action classes. The goal of this task is to detect and predict
action classes from proposals generated by off-the-shelf person detectors. We again
use the implementation of [60] with the R(2+1)D-18 backbone. During training,
we use 32 frames with a sampling rate of 2. We use spatial crop of 112x112 and
augmentations such as random short-side scaling, random spatial crop, horizontal
flip. We train for 20 epochs with learning rate of 0.1 with multi-step scheduler with
v = 0.1 at epochs [10, 15] and a batch size of 32. During testing, following [60], we
use a single clip at the center of the video with 8 frames and sampling rate of 8. We
report mean average precision (mAP) across the classes.

Uhttps://github.com/facebookresearch/SlowFast
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B.3 Correlations of Downstream Performance

As observed from the results of Section 4.3, the performance for both UCF-101
finetuning and Kinetics-400 linear evaluation is not indicative of how well a self-
supervised video model generalizes to different downstream domains, samples, actions
and tasks. Here, we plot the performance of each pre-trained model for each down-
stream settings and show the correlation with UCF-101 finetuning and Kinetics-400
linear evaluation performances. The results are shown in Figures B.1-B.8. These plots
further demonstrate that the correlations are overall low for each downstream factor
i.e. domain, samples, actions and tasks, indicating that more thorough testing of video
self-supervised methods is needed.
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FIGURE B.1: Downstream domain against UCF-101 finetuning. We plot the corelations
between finetuning performance of video pre-training methods on UCF-101 and performances on
finetuning and linear-evaluation on all downstream datasets.
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FIGURE B.9: Representation similarity between features of self-supervised methods and su-
pervised pre-training on Kinetics-400 validation set using centered kernel alignment. Features of
contrastive methods are more closer to the features of supervised pretraining.

B.4 Representation Similarity Matrices

We plot the the feature similarity on Kinetics validation set using centered kernel
alignment [162] between supervised pre-training and our evaluated self-supervised
pre-training methods in Figure B.9. We showed a subset of these plots in Figure 4.4,
here we show the feature similarity for all the self-supervised models we used in our
experiments.

B.5 Downstream Dataset Attributes

We define several attributes in Section 4.2.1 in order to characterize differences in
domain between the downstream datasets and the Kinetics-400 pre-training dataset
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FIGURE B.10: Radar plots with details. The radar plots contain details of the values
along the axis for every attribute for the datasets we use in this study.

in Figure 4.2. We provide detailed radar plots in Figure B.10 with axes labeled
with relevant values for each attribute. The attributes Point-of-view and Environment
are defined qualitatively based on the contents of the target dataset. Examples of
videos from each of the datasets are shown in Figure B.11. We can see that FineGym
[197] consists of videos of Olympic gymnastic events. Thus, we label it as stadium
for environment and third-person for point-of-view. On the radar plots, we order
environment in descending order of variability contained in a given dataset. Kinetics-
400 i1s placed near the origin as it has much higher variability than NTU-60 for
example, which is captured in a controlled lab setting. Action length is the average
duration of the actions in each of the datasets.

We quantify temporal awareness as the minimum number of frames (temporal
context) required to best recognize the action. We do this by finetuning R(2+1)D
with weights initialized from supervised pre-training on Kinetics-400 and we denote

temporal awareness (T) as:
min {(100 X M) < zx}
te{12,..,N} ft

where « is chosen to be 1. This means T indicates the number of frames after which

T=ar (B.1)



96 Appendix B. Supplementary Materials for Benchmark Sensitivity
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FIGURE B.11: Example video frames from the Kinetics-400 pre-training dataset and the
7 different downstream datasets we consider. Note the differences in the capture setting
and point-of-view across these datasets.
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FIGURE B.12: Temporal awareness. [llustrating the effect of temporal awareness (in-
creasing temporal-context) on the action recognition performance using a standard 3D-
CNN for different action datasets.
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relative improvement in performance is lesser than a, i.e. when the performance
has plateaued. Figure B.12 shows the top-1 action recognition performance against
increasing number of frames for each of our downstream datasets. We use bilinear
interpolation to estimate performance at given number of frames beyond those that
we experiments with. For example, using our method to compute temporal awareness,
the performance for UCF-101 plateaus at 7 frames while that for EK-100 plateaus at
32 frames indicating that EK-100 needs much larger temporal context for recognition
while UCF-101 may suffice with a shorter temporal context.

Label overlap is the amount of actions which are present in both the downstream
dataset and the pretraining dataset (Kinetics-400). We quantify this by matching
identical actions as well as manually checking for reworded versions of the same
action class. For example, “head massage” in UCF-101 has a corresponding action
“massaging person’s head” in Kinetics-400. In NTU-60 action class “brushing teeth”
has a matching action “brushing teeth” in Kinetics-400.

B.6 Standard deviations for SEVERE-benchmark

In this section, we show the standard deviations of each pretrained method for all
downstream setups in our proposed benchmark. The results are obtained over 3 runs
initialized with different random seeds. It is clear from Table B.3 that results are
consistent over multiple runs with small std deviations. Thus our observations and
conclusions are not impacted across multiple runs. Moreover, future works can refer
to Table B.3 for reproduciblity.

Existing SEVERE-benchmark
Pre-training Domains Samples Actions Tasks
UCF101 HMDBSI SS-v2 Gym-99  UCF (10%) Gym-99 (10%) FX-S1 UB-SI UCF-RC  Charades-MLC

None 773£0.9 47.7£1.6 571413 | 89.84£0.1 | 38.3f14 22.743.5 46.6+£1.8 823421 | 0.21740.01 7.9£0.1
MoCo 83.3+0.3 53.6+0.2 57.14+0.1 90.7+0.2  60.4+1.0 30.9+1.0 65.0+1.2 84.5+0.4 | 0.208+0.01 8.3+0.1
VideoMoCo 84.9+0.5 58.0+1.0 59.0+0.1 90.3+0.3 65.4+1.2 20.640.8 57.3+29 83.9+1.6 0.18540.00 10.5+0.1
SeLaVi 85.24+0.3 54.2+0.3 56.24+0.1 | 88.94£0.1  69.0£1.9 30.2+0.9 51.3+1.0 80.9£1.6 0.162+0.01 8.4+0.1
Pretext-Contrast  87.740.6 58.4+0.6 56.94+02 90.5£0.1 64.6+2.3 27.5+1.6 66.1+0.3 86.1£0.8  0.164+0.01 8.9+0.1
RSPNet 88.7+£0.1 59.2+0.7 59.0£0.3 91.1+0.0 = 74.740.6 AA=E 65.4+1.7 83.6£1.3 = 0.145+0.01 9.0+0.3
AVID-CMA 88.8+0.3 58.7+1.2 52.0+£0.6 90.4+04  68.240.5 33.4+0.8 68.0£0.9 87.3+£1.0 0.148+0.01 8.24+0.2
CtP 90.1£0.1 63.2+0.5 59.6+0.4 92.0£0.1 61.0+15 32.94+1.9 79.1£0.5 88.8£0.5| 0.178+0.01 9.6+0.1
TCLR 90.84£0.2 60.6+0.9 59.84£0.0 91.6+0.0 72.6+19 26.3+1.0 60.7£0.7 84.7£1.1 = 0.142+0.01 12.2+0.3
GDT 91.3+0.3 64.8+1.0 58.0£0.3 90.5£0.1 = 78.440.2 45.610.6 66.0£0.3 83.4+1.6 | 0.123=0.01 8.540.1
Supervised 939402 68.5+0.4 60.8+0.1 92.1+0.1  86.6+0.6 51.340.1 79.0£2.0 87.1+£0.2 = 0.13240.01 23.540.1

TABLE B.3: Standard deviations for proposed SEVERE-benchmark. We compute the
std of each method for each downstream setup over 3 runs initialized with random seeds.

B.7 HMDBS5I1 Results

For completion we also show the performance of each pretraining method on the
HMDB51 [122] dataset in Table B.3. HMDBS51 is used in current standard benchmark-
ing along with UCF101 [209]. It is clear from the table that the performances on both
datasets are highly correlated to each other and less correlated to other downstream
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setups. This again highlights the importance of evaluating video self-supervised meth-
ods beyond current benchmarks and use a setup which evaluates the generalizability
of current models, such as the SEVERE-benchmark.

B.8 Linear Evaluation for Downstream Samples

In Section 4.4 we evaluated our pre-trained models with varying amounts of down-
stream samples for finetuning. In this section we provide the results for the same
experiment but using linear-evaluation instead of finetuning. The results are shown
in Figure B.13. We observe that rank changes are not significant between different
sample sizes as they are for full finetuning., However similar to finetuning, supervised
pretraining is dominant for low data setting as shown by the performance on NTU-60
and GYM-99 with 1000-4000 examples.
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FIGURE B.13: Linear evaluation for Downstream Samples. Comparison of video

self-supervised learning methods using varying number of samples on linear evaluation

for four downstream datasets. Rank changes are less significant with increasing sample
size.

B.9 Verb vs. Noun in Downstream Action Recognition

EPIC-Kitchens-100 [39] consists of noun and verb annotations for each video. An
action is defined as a tuple of these. In the main paper, we report verb recognition
performance across all experiments. In Table B.4 we compare the performance on
verb recognition to the performance on noun and action recognition. In general, per-
formance is lower for noun and action recognition in comparison to verb recognition.
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EPIC-Kitchens-100

Pre-training Verb  Noun  Action
None 25.7 6.9 1.8
MoCo 264 139 6.9
SeLaVi 33.8 12.1 59
VideoMoCo 43.6 15.1 9.4
Pretext-contrast ~ 34.3 114 5.6
RSPNet 427 187 11.7
AVID-CMA 29.9 8.7 3.6
CtP 42.8 12.0 7.8
TCLR 36.2 11.7 5.8
GDT 37.3 15.5 8.4
Supervised 47.7 245 16.0

TABLE B.4: Ablation on Verb and Noun Recognition. On EPIC-Kitchens-100, we
show results for noun, verb and action recognition. Colors denote relative rankings across
methods for each dataset, ranging from . Most pre-training methods
struggle on noun and action recognition and have little correlation with verb recognition.

This is likely due to the R(2+1)D-18 backbone being insufficient to model the com-
plex actions found in EPIC-Kitchens-100. Interestingly, good performance on verb
recognition is not a good indication that the model will perform well at noun or action
recognition. Notably, some methods such as VideoMoCo and CtP perform well at verb
recognition but struggle on noun recognition. RSPNet seems to perform reasonably
well for both verb and noun recognition.
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Appendix C

Supplementary Materials for
Tubelet-Contrastive Learning

C.1 Generalization on Diving48

To further highlight the generalizability of our method to new domains and fine-
grained actions, we finetune and evaluate with the challenging Diving48 dataset [ 133].
It contains 18K trimmed videos for 48 different diving sequences all of which take
place in similar backgrounds and need to be distinguished by subtle differences such
as the number of somersaults or the starting position. We use standard train/test split
and report top-1 accuracy.

In Table C.1, we show the performance of our model when pretrained on the full
Kinetics-400 and on Mini-Kinetics (1). We compare these results to no pretraining, the
temporal contrastive baseline pretrained on Kinetics-400, and supervised pretraining
on Kinetics-400 with labels. Our method increases the performance over training
from scratch by 7.9% and the temporal contrastive baseline by 6.6%. Our method
even outperforms the supervised pretraining baseline by 4.5%. This suggests that by
contrasting tubelets with different motions, our method is able to learn better video
representations for fine-grained actions than supervised pretraining on Kinetics. When
pretraining on Mini-Kinetics (3x smaller than Kinetics-400) the performance of our
model does not decrease, again demonstrating the data efficiency of our approach.

C.2 Evaluation with R3D and 13D Backbones

In addition to the R(2+1)-18 backbone, we also show the performance of our pro-
posed method with other commonly used video encoders i.e., R3D-18 [229] and
I3D [23]. For R3D-18, we use the same tubelet generation and transformation as that
of R(2+1)D-18, as described in chapter 5. For I3D, we change the input resolution to
224x224 and sample the patch size H "W uniformly from [32x32,128x128|. For
both, we follow the same pretraining protocol as described in chapter 5.

We compare with prior works on the standard UCF101 [209] and HMDBS51 [122]
datasets. Table C.2 shows the results with Kinetics-400 as the pretraining dataset.
With the I3D backbone, our method outperforms prior works on both UCF101 and
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Pretraining Top-1
Supervised [229] 84.5
None 81.1
Temporal Contrast Baseline 82.4
This chapter' 894
This chapter 89.0

TABLE C.1: Generalization on Diving48 [133]. Comparison with temporal contrastive
pretraining and supervised pretraining on Diving48 with R(2+1)D-18 backbone. t indi-
cates pretraining on Mini-Kinetics, otherwise all pretraining was done on Kinetics-400.

HMDBS51. Similarly, with the R3D-18 backbone, we outperform prior works using
the RGB modality on UCF101. We also achieve comparable performance to the
best-performing method on HMDBS51, improving over the next best method by 6.3%.
On HMDB51 we also outperform prior works which pretrain on an additional optical
flow modality and achieve competitive results with these methods on UCF101.

C.3 Evaluation on Kinetics Dataset

To show whether our tubelet-contrastive pretraining can improve the performance of
downstream tasks when plenty of labeled data is available for finetuning, we evaluate
it on the Kinetics-400 [113] dataset for the task of action classification. The dataset
contains about 220K labeled videos for training and 18K videos for validation. As
evident from Table C.3, such large-scale datasets can still benefit from our pretraining
with a 3.4% improvement over training from scratch and 0.7% over the temporal
contrast baseline.

C.4 Finetuning Details

During finetuning, we follow the setup from the SEVERE benchmark [224] which
is detailed here for completeness. For all tasks, we replace the projection of the pre-
trained model with a task-dependent head.

Action Recognition. Downstream settings which examine domain shift, sample
efficiency, and action granularity all perform action recognition. We use a similar fine-
tuning process for all experiments on these three factors. During the training process,
a random clip of 32 frames is taken from each video and standard augmentations are
applied: a multi-scale crop of 112x112 size, horizontal flipping, and color jittering.
The Adam optimizer is used for training, with the learning rate, scheduling, and total
number of epochs for each experiment shown in Table C.4. During inference, 10
linearly spaced clips of 32 frames each are used, with a center crop of 112x112. To
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Method Modality ¥ UCF HMDB
13D

SpeedNet [ 5] RGB 66.7 43.7
DSM [242] RGB 74.8 525
BE [244] RGB 86.2 554
FAME [45] RGB 88.6  61.1
This chaptert RGB 89.5 64.0
This chapter RGB 89.7 63.9
R3D-18

VideoMoCo [169] RGB 74.1 43.6
RSPNet [173] RGB 743  41.6
LSFD [14] RGB 772 53.7
MLFO [180] RGB 79.1  47.6
ASCNet [94] RGB 80.5 523
MCN [138] RGB 854 548
TCLR [41] RGB 854 554
CtP [237] RGB 86.2  57.0
TE [101] RGB 87.1  63.6
MSCL [164] RGB+Flow 90.7  62.3
MaCLR [252] RGB+Flow 91.3 62.1
This chapter' RGB 888 62.0
This chapter RGB 90.1 633

TABLE C.2: Evaluation with I3D and R3D backbones: on standard UCF101 and

HMDB51 benchmarks. Gray lines indicate the use of additional modalities during self-

supervised pretraining. 1 indicates pretraining on Mini-Kinetics, otherwise, all models
were pretrained on Kinetics-400.

Pretraining Top-1
None 61.4
Temporal Contrast Baseline 64.1
This chapter 64.8

TABLE C.3: Kinetics-400 Evaluation. Comparison with temporal contrastive pretraining
for large-scale action recognition. All models use R(2+1)D-18 and pretraining was done
on Kinetics-400 training set.

determine the action class prediction for a video, the predictions from each clip are
averaged. For domain shift and sample efficiency, we report the top-1 accuracy. For
action granularity experiments we report mean class accuracy, which we obtain by
computing accuracy per action class and averaging over all action classes.
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Evaluation Factor Experiment Dataset Batch Size Learning rate Epochs Steps
Standard UCFI101 UCF 101 [209] 32 0.0001 160 [60,100,140]
HMDB5!  HMDB 51 [122] 32 0.0001 160 [60,100,140]

. . SS-v2 Something-Something [74] 32 0.0001 45 [25, 35, 40]
Domain Shift Gym-99 FineGym [197] 32 0.0001 160 [60,100,140]
) UCF (10%)  UCF 101 [209] 32 0.0001 160 [80,120,140]

Sample Efficiency o 103)  FineGym [197] 32 0.0001 160 [80,120,140]
. . FX-SI FineGym [197] 2 0.0001 160 [70,120,140]
Action Granularity ;o) FineGym [197] 3 00001 160 [70,120,140]
. UCE-RC  UCFRep [276] 32 0.00005 100 -

Task Shift Charades  Charades [202] 16 0.0375 57 [41,49]

TABLE C.4: Training Details of finetuning on various downstream datasets and tasks.

Repetition counting. The implementation follows the original repetition counting
work proposed in UCFrep work [276]. From the annotated videos, 2M sequences of
32 frames with spatial size 112x112 are constructed. These are used as the input. The
model is trained with a batch size of 32 for 100 epochs using the Adam optimizer with
a learning rate of 0.00005. For testing, we report mean counting error following[276].
Multi-label classification on Charades. Following [60], a per-class sigmoid output is
utilized for multi-class prediction. During the training process, 32 frames are sampled
with a stride of 8. Frames are cropped to 112x112 and random short-side scaling,
random spatial crop, and horizontal flip augmentations are applied. The model is
trained for a total of 57 epochs with a batch size of 16 and a learning rate of 0.0375.
A multi-step scheduler with v = 0.1 is applied at epochs [41, 49]. During the testing
phase, spatiotemporal max-pooling is performed over 10 clips for a single video. We
report mean average precision (mAP) across all classes.

SSv2-Sub details. We use a subset of Something-Something v2 for ablations. In
particular, we randomly sample 25% of the data from the whole train set and spanning
all categories. This results in a subset consisting of 34409 training samples from 174
classes. We use the full validation set of Something-Something v2 for testing.

C.5 Tubelet Transformation Hyperparameters

Table C.5 shows the results when applying multiple tubelet transformations in the
tubelet generation. While applying individual transformations improves results, comb-
ing multiple transformations doesn’t improve the performance further. This is likely
because rotation motions are common in the downstream datasets while scaling and
shearing are less common.

Table C.6 shows an ablation over Min and Max values for tubelet transformations.
In chapter 5., we use scale values between 0.5 and 1.5, shear values between -1.0 and
1.0, and rotation values between -90 and 90. Here, we experiment with values that
result in more subtle and extreme variations of these transformations. We observe that
all values for each of the transformations improve over no transformation. Our model
is reasonably robust to these choices in hyperparameters, but subtle variations e.g.,
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Transformation UCF (10%) Gym (10%)
None 63.0 45.6
Scale 65.1 46.5
Shear 65.2 47.5
Rotate 65.5 48.0
Scale + Shear 65.2 46.0
Rotate + Scale 65.4 46.9
Rotate + Shear 65.3 45.7
Rotate + Scale + Shear 65.6 46.0

TABLE C.5: Tubelet Transformation Combinations. Combining transformations
doesn’t give a further increase in performance compared to using individual transforma-

tions.
Min Max UCF (10%) Gym (10%)
None
- - 63.0 45.6
Scale
0.5 1.25 65.6 45.3
0.5 1.5 65.1 46.5
0.5 2.0 65.6 46.0
Shear
-0.75 0.75 64.4 47.5
-1.0 1.0 65.2 48.0
-1.5 1.5 65.2 47.5
Rotation
-45 45 65.2 49.3
-90 90 65.5 48.0
-180 180 65.6 49.6

TABLE C.6: Tubelet Transformation Hyperparameters. We change Min and Max
values for tubelet transformations. Our model is robust to changes in these parameters,
with all choices tested giving an improvement over no tubelet transformation.

scale change between 0.5 to 1.25 or shear from 0.75 to 0.75 tend to be slightly less
effective.

C.6 Tubelets vs. Randomly Scaled Crops

To show that our proposed tubelets inject useful motions in the training pipeline, we
compare them with randomly scaled crops. In particular, we randomly crop, scale,
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UCF (10%) Gym (10%) SSv2-Sub UB-S1

Randomly Scaled Crops 59.5 37.5 44.8 87.0
Tubelets 65.5 48.0 47.9 90.9

TABLE C.7: Tubelets vs Randomly Scaled Crops. Our tubelets generate smooth motions
to learn better video representations than strongly jittered crops.

and jitter the patches pasted into the video clips when generating positive pairs and
pretrain this and our model on Mini-Kinetics. Table C.7 shows that our proposed
motion tubelets outperform such randomly scaled crops in all downstream settings.
This validates that the spatiotemporal continuity in motion tubelets is important to
simulate smooth motions for learning better video representations.

C.7 Per-Class Results

Examining the improvement for individual classes gives us some insight into our
model. Figure C.1 shows the difference between our approach and the baseline for
the 10 classes in UCF (10%) with the highest increase and decrease in accuracy. Many
of the actions that increase in accuracy are motion-focused, e.g., pullups, lunges
and jump rope. Other actions are confused by the baseline because of the similar
background, e.g., throw discus is confused with hammer throw and apply eye makeup
is confused with haircut. The motion-focused features our model introduces help
distinguish these classes. However, our model does lose some useful spatial features
for distinguishing classes such as band marching and biking.

C.8 C(lass Agnostic Activation Maps

Figure C.2 show more examples of class agnostic activation maps [10] for video
clips from various downstream datasets. Note that no finetuning is performed, we
directly apply the representation from our tubelet contrastive learning pretrained on
Kinetics-400. For examples from FineGym, Something Something v2, and UCF101,
we observe that our approach attends to regions with motion while the temporal
contrastive baseline mostly attends to background.

C.9 Limitations and Future Work

There are several open avenues for future work based on the limitations of this work.
First, while we compare to transformer-based approaches, we do not present the
results of our tubelet-contrast with a transformer backbone. Our initial experiments
with a transformer-based encoder [48] did not converge with off-the-shelf settings.
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FIGURE C.1: Per-Class Accuracy Difference on UCF (10%) between our model and

the temporal contrastive baseline. We show the 10 actions with the highest increase and

decrease. Our model can better distinguish classes requiring motion but loses some ability
to distinguish spatial classes.

We hope future work can address this problem for an encoder-independent solution.
Additionally, we simulate tubelets with random image crops that can come from both
background and foreground regions. Explicitly generating tubelets from foreground
regions or pre-defined objects is a potential future direction worth investigating.
Finally, we only simulate tubelets over short clips, it is also worth investigating
whether long-range tubelets can be used for tasks that require long-range motion
understanding.
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Temporal Contrastive Learning  Tubelet-Contrastive Learning (Ours)

FineGym

1Y Wit
L=k v

Something Something v2

UCF101

FIGURE C.2: Class-Agnostic Activation Maps Without Finetuning for the temporal
contrastive baseline and our tubelet contrast for different downstream datasets. Our model
better attends to regions with motion irrespective of the domain.
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Summary

The thesis strives to endow video-efficiency in video understanding by addressing the
research question “What enables video-efficient video foundation models?” Video-
efficiency encompasses developing video foundation models that are not only accurate
but also exhibit label-efficiency i.e. require fewer labels, domain-efficiency i.e. ap-
plicable to a variety of video learning scenarios, and data-efficiency i.e. reduce the
amount of video data needed for learning. The main research question is addressed for
RGB and non-RGB video modalities. A brief summary of each chapter is provided as
follows:

In Chapter 2, we focus on improving the label- and domain-efficiency of non-
RGB action recognition and detection. While there are abundant labeled large-scale
action datasets available for RGB video modality, which are extensively used to
enhance the performance of new RGB actions, such datasets are scarce for non-
RGB modalities like Depth maps and 3D-Skeleton data. To address this, we propose
to train action models for a non-RGB target modality, such as depth maps or 3D-
skeletons, by extracting knowledge from a large-scale action labeled RGB dataset. Our
approach employs a cross-modal teacher-student framework, utilizing unlabeled pairs
of RGB and the target modality to transfer action representation knowledge through
feature-supervision. The experimental evaluation demonstrates the effectiveness of
our approach in improving both label and domain-efficiency for action recognition
and detection when utilizing Depth maps and 3D-Skeleton sequences. These findings
emphasize the potential of large-scale RGB action datasets in enhancing the video-
efficiency of non-RGB video models.

Chapter 3 introduces a new self-supervised approach for learning feature rep-
resentations for 3D-skeleton video sequences. Existing self-supervised methods for
3D-skeletons often rely on pretext tasks such as motion reconstruction or prediction,
which can yield sub-optimal feature representations. To overcome this limitation, we
draw inspiration from contrastive learning in the RGB domain and develop a new
self-supervised task. Our approach incorporates skeleton-specific augmentations that
can capture spatio-temporal dynamics of the skeleton data by generating meaningful
positive pairs. Furthermore, we propose inter-skeleton contrast to learn from different
input skeleton representations by maximizing the similarities between them. Such
formulation avoids any shortcut solutions to the contrastive task and results in learning
a better feature space. Experimental results demonstrate that our method outperforms
state-of-the-art self-supervised approaches for skeleton data on downstream tasks of
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action recognition and retrieval. Furthermore, our approach exhibits enhanced label-
efficiency compared to the previous self-supervised methods, when only a few labeled
samples are available for downstream tasks. These findings underscore the effective-
ness of our contrastive self-supervised approach in learning powerful representations
for 3D-skeleton video sequences.

In Chapter 4, we conduct a large-scale study of existing RGB-based self-supervised
video models to assess their performance across different facets of video-efficiency.
Existing benchmarks in video self-supervised learning exhibit a high similarity with
the datasets used in self-supervised training. This leaves a gap in understanding
the generalization capability of video foundation models learned by existing self-
supervised tasks beyond such canonical settings. To this end, we evaluate a set of
video self-supervised models on a range of downstream setups that encompass vari-
ability in environmental conditions, amount of available labeled samples, action
granularity, and nature of the task. Our study shows that current benchmarks in video
self-supervised learning are not a good indicator of the generalizability across diverse
and challenging downstream setups. We observe that video representations learned
by vanilla supervised pre-training generalize better than self-supervised represen-
tations for most downstream factors. From our experimental analysis, we propose
the SEVERE-benchmark that can give some indication of the generalizability of
video self-supervised methods across the evaluated downstream factors. Our study
demonstrates the lack of label- and domain-efficiency exhibited by the existing video
self-supervised foundation models, especially for domains that require finer motion
understanding.

Chapter 5 presents a new method for video self-supervision that explicitly aims
to learn motion focused video-representations via contrastive learning. Existing works
in video contrastive learning aim to increase feature similarity between positive pairs
from the same video, resulting in video representations that are skewed toward spatial
semantics. In contrast, our method aims to increase feature similarity between video
pairs that only share spatio-temporal dynamics in the form of synthetic tubelets. To
this end, we simulate synthetic motion tubelets and overlay them on two different
video clips to generate positive pairs that have a low spatial bias. Such formulation
forces the model to rely on the spatio-temporal dynamics of the tubelets to learn the
similarity. Moreover, different tubelet generation and tubelet transformation strategies
are proposed to simulate motion patterns beyond what exists in the original training
data. Our approach improves the generalizability of the learned video foundation
model demonstrating better domain-efficiency, especially to downstream setups from
diverse environments and with different action granularities. We also achieve better
label-efficiency than prior works for fine-grained action recognition. Furthermore, the
experimental evaluation also shows that our method exhibits data efficiency in self-
supervised training, retaining its performance when only using 25% of the training
data.
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Conclusions

This thesis presents several novel approaches to improve the video-efficiency of video
foundation models. By demonstrating the effectiveness of video models that use a
reduced set of labeled videos for downstream tasks, learn representations from limited
amounts of unlabeled data, and adapt to various downstream video domains, we
have addressed the main research question for different modalities of video data.
Our research highlights the importance of transferring knowledge between RGB
and non-RGB video modalities [223], exploring self-supervision for non-RGB video
modeling [221], analyzing self-supervised models beyond canonical setups [224] and
carefully designing new self-supervised tasks to develop video foundation models that
can exhibit all facets of video-efficiency [220]. Our results suggest that video-efficient
learning has the potential to train video foundation models that significantly reduce the
amount of labeled data required for solving downstream video-based tasks, reduce the
computation costs otherwise associated with training video foundation models, and
remove the need to build individual domain-specific foundation models for diverse
video domains. As a result, it becomes easier to develop video understanding solutions
with reduced costs.

However, further research is required to explore the complete potential of video-
efficient foundation models and video understanding in general. One intriguing direc-
tion involves incorporating additional aspects into video-efficiency, such as ego-centric
vision [75], video-text modeling [258], and more complex video tasks like video
summarization [6], video segmentation [179], video captioning [273], etc. Another
potential direction is to decrease the complexity of video modeling by incorporating
temporal redundancy and designing efficient network architectures [57], enabling
the viability of video applications with low resources. Moreover, with stricter data
regulations from government bodies and the rise in misuse of Al by bad actors, de-
veloping privacy-preserving solutions [42, ] for video understanding is also an
important future direction. Similarly, generative Al [231, 88] could be explored to
synthesize more realistic video training data for developing new video foundation
models. In conclusion, this thesis provides a contribution to video understanding,
demonstrating the potential of video-efficient learning and providing insights into how
it can be achieved for different modalities of video data. We hope that our work will
inspire further research and development in this area, leading to even more efficient
and responsible solutions in the future.
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Samenvatting

Het proefschrift streeft ernaar om video-efficiéntie bij te brengen in video-begrip door
zich te richten op de onderzoeksvraag "Wat maakt video-efficiénte video foundation-
modellen mogelijk?". Video-efficiéntie omvat het ontwikkelen van video foundation-
modellen die niet alleen nauwkeurig zijn, maar ook label-efficiént zijn, d.w.z. minder
labels vereisen, domein-efficiént zijn, d.w.z. toepasbaar zijn in verschillende video-
leerscenario’s, en data-efficiént zijn, d.w.z. de hoeveelheid video-data die nodig is
voor het leren verminderen. De belangrijkste onderzoeksvraag wordt behandeld voor
zowel RGB- als niet-RGB-video-modaliteiten. Een beknopte samenvatting van elk
hoofdstuk wordt hieronder gegeven:

In Hoofdstuk 2 richten we ons op het verbeteren van de label- en domein-
efficiéntie van niet-RGB actieherkenning en detectie. Hoewel er in overvloed gela-
belde, grootschalige actiedatasets beschikbaar zijn voor RGB-video’s, die uitge-
breid worden gebruikt om de prestaties van nieuwe RGB-acties te verbeteren, zijn
dergelijke datasets schaars voor niet-RGB-modaliteiten zoals dieptekaarten en 3D-
skeletgegevens. Om dit aan te pakken, stellen we voor om actiemodellen te trainen
voor een niet-RGB-doelmodaliteit, zoals dieptekaarten of 3D-skeletten, door kennis
te extraheren uit een grootschalige actie-gelabelde RGB-dataset. Onze aanpak maakt
gebruik van een cross-modal student-teacher framework, waarbij ongelabelde paren
van RGB en de doelmodaliteit worden gebruikt om actie-representatiekennis over te
dragen via feature-supervisie. De experimentele evaluatie toont de effectiviteit van
onze aanpak aan bij het verbeteren van zowel de label- als domein-efficiéntie voor
actieherkenning en detectie bij het gebruik van dieptekaarten en 3D-skeletsequenties.
Deze bevindingen benadrukken het potentieel van grootschalige RGB-actiedatasets
bij het verbeteren van de video-efficiéntie van niet-RGB-video-modellen.

In Hoofdstuk 3 wordt een nieuwe self-supervised aanpak geintroduceerd voor
het leren van feature-representaties voor 3D-skelet videosequenties. Bestaande self-
supervised methoden voor 3D-skeletten bouwen vaak op pretext taken zoals beweg-
ingsreconstructie of voorspelling, wat kan leiden tot suboptimale feature-representaties.
Om deze beperking te overkomen, halen we inspiratie uit contrastive learning in
het RGB-domein en ontwikkelen we een nieuwe self-supervised taak. Onze aan-
pak omvat skelet-specifieke augmentaties die de spatio-temporele dynamiek van de
skeletgegevens kunnen vastleggen door betekenisvolle positieve paren te genereren.
Bovendien stellen we inter-skelet contrast voor om te leren van verschillende in-
put skeletrepresentaties door de overeenkomsten tussen hen te maximaliseren. Een
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dergelijke formulering vermijdt shortcut-oplossingen van de contrastieve taak en
resulteert in het leren van een betere feature space. Experimentele resultaten tonen aan
dat onze methode beter presteert dan state-of-the-art self-supervised methodes voor
skeletgegevens op downstream-taken zoals actieherkenning en retrieval. Bovendien
vertoont onze aanpak een verbeterde label-efficiéntie in vergelijking met eerdere self-
supervised methoden, wanneer slechts een paar gelabelde voorbeelden beschikbaar
zijn voor downstream-taken. Deze bevindingen benadrukken de effectiviteit van onze
contrastieve self-supervised aanpak bij het leren van krachtige representaties voor
3D-skelet videosequenties.

In Hoofdstuk 4 voeren we een grootschalige studie uit naar bestaande op RGB
gebaseerde self-supervised videomodellen om hun prestaties te beoordelen op ver-
schillende aspecten van video-efficiéntie. Bestaande benchmarks in self-supervised
video leren laten een hoge gelijkenis zien met de datasets die worden gebruikt in
self-supervised training. Dit laat een gat achter in het begrijpen van de generalisatieca-
paciteit van video foundation-modellen die zijn geleerd door bestaande self-supervised
taken buiten dergelijke standaardopstellingen. Om dit te bereiken, evalueren we een
set van self-supervised videomodellen op verschillende downstream-opstellingen
die variabiliteit omvatten in omgevingsomstandigheden, hoeveelheid beschikbare
gelabelde voorbeelden, actiegranulariteit en aard van de taak. Onze studie toont aan
dat huidige benchmarks in self-supervised videoleren geen goede indicator zijn van
de generaliseerbaarheid over diverse en uitdagende downstream-opstellingen. We
constateren dat videorepresentaties geleerd door gewone supervised pre-training beter
generaliseren dan self-supervised representaties voor de meeste downstream-factoren.
Op basis van onze experimentele analyse stellen we de SEVERE-benchmark voor
die enige indicatie kan geven van de generaliseerbaarheid van self-supervised meth-
oden voor video over de ge€valueerde downstream-factoren. Onze studie toont het
gebrek aan label- en domein-efficiéntie aan van de bestaande self-supervised video
foundation-modellen, vooral voor domeinen die een fijner bewegingsbegrip vereisen.

In Hoofdstuk 5 presenteren we een nieuwe methode voor video self-supervision
die expliciet gericht is op het leren van op beweging gerichte videorepresentaties via
contrastive learning. Bestaande werken op het gebied van video contrastive learning
hebben tot doel de feature-overeenkomst tussen positieve paren van dezelfde video te
vergroten, wat resulteert in videorepresentaties die naar ruimtelijke semantiek neigen.
In tegenstelling hiermee heeft onze methode als doel de feature-overeenkomst te ver-
groten tussen videoparen die alleen spatio-temporele dynamiek delen in de vorm van
synthetische tubelets. Hiertoe simuleren we synthetische bewegings-tubelets en leggen
ze over twee verschillende videoclips om positieve paren te genereren met een lage
ruimtelijke bias. Een dergelijke formulering dwingt het model om te vertrouwen op de
spatio-temporele dynamiek van de tubelets om de overeenkomst te leren. Bovendien
worden verschillende strategie€n voorgesteld voor het genereren en transformeren
van tubelets om bewegingspatronen te simuleren die verder gaan dan wat er in de oor-
spronkelijke trainingsgegevens bestaat. Onze aanpak verbetert de generaliseerbaarheid
van het geleerde video foundation-model en toont een betere domein-efficiéntie, vooral
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voor downstream-opstellingen in diverse omgevingen en met verschillende actiegran-
ulariteiten. We bereiken ook een betere label-efficiéntie dan eerdere methoden voor
fijnkorrelige actieherkenning. Bovendien toont de experimentele evaluatie ook aan
dat onze methode data-efficiéntie vertoont in self-supervised training, waarbij de
prestaties behouden blijven wanneer slechts 25% van de trainingsgegevens worden
gebruikt.

Conclusies

Deze scriptie presenteert verschillende nieuwe methodes om de video-efficiéntie van
video foundation-modellen te verbeteren. Door de effectiviteit van video-modellen
aan te tonen die een verminderde set gelabelde video’s gebruiken voor downstream-
taken, representaties leren uit beperkte hoeveelheden ongelabelde data, en zich aan-
passen aan verschillende downstream video-domeinen, hebben we de belangrijk-
ste onderzoeksvraag behandeld voor verschillende modaliteiten van videodata. Ons
onderzoek benadrukt het belang van het overdragen van kennis tussen RGB- en
niet-RGB-videomodaliteiten [223], het verkennen van self-supervision voor niet-
RGB-video-modellering [221], het analyseren van self-supervised modellen buiten
standaardopstellingen [224], en het zorgvuldig ontwerpen van nieuwe self-supervised
taken om video foundation-modellen te ontwikkelen die alle facetten van video-
efficiéntie kunnen vertonen [220]. Onze resultaten suggereren dat video-efficiént
leren het potentieel heeft om video foundation-modellen te trainen die aanzienlijk
de hoeveelheid gelabelde data verminderen die nodig is voor het oplossen van down-
stream video-gebaseerde taken, de computationele kosten verminderen die normaal
gepaard gaan met het trainen van video foundation-modellen, en de noodzaak wegne-
men om individuele domein-specifieke foundation-modellen te bouwen voor diverse
video-domeinen. Hierdoor wordt het gemakkelijker om video-begripsoplossingen te
ontwikkelen met verminderde kosten.

Niettemin is verder onderzoek nodig om het volledige potentieel van video-
efficiénte foundation-modellen en video-begrip in het algemeen te verkennen. Een
intrigerende richting omvat het opnemen van aanvullende aspecten in video-efficiéntie,
zoals egocentrische visie [75], video-tekst modellering [258], en complexere video-
taken zoals video-samenvatting [6], video-segmentatie [ | 79], video-onderschriften [273],
enzovoort. Een andere potenti€le richting is het verminderen van de complexiteit van
video-modellering door het opnemen van temporele redundantie en het ontwerpen
van efficiénte netwerkarchitecturen [57], waardoor video-toepassingen met weinig
middelen haalbaar worden. Bovendien, met strengere gegevensreguleringen van over-
heidsinstanties en de toename van het misbruik van Al door kwaadwillende actoren, is
het ontwikkelen van privacybehoudende oplossingen [42, ] voor videobegrip ook
een belangrijke toekomstige richting. Op dezelfde manier zou generatieve Al [231, 88]
kunnen worden verkend om realistischere video-trainingsgegevens te synthetiseren
voor het ontwikkelen van nieuwe video foundation-modellen. Samengevat levert deze
scriptie een bijdrage aan video-begrip, waarbij het potentieel van video-efficiént leren
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wordt aangetoond en inzichten worden gegeven in hoe dit kan worden bereikt voor
verschillende modaliteiten van videodata. We hopen dat ons werk verdere onderzoek
en ontwikkeling op dit gebied zal inspireren, wat zal leiden tot nog efficiéntere en
verantwoordelijke oplossingen in de toekomst.
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